
Cognitive Patterns: Problem-Solving
Frameworks for Object Technology

Cognitive Patterns:
 Problem-Solving

Frameworks for Object
Technology

Karen M Gardner

Alexander Rush

Michael K Crist

Robert K Konitzer

Bobbin Teegarden

Copyright © 2011 Robert K Konitzer

For any questions about this text, please email: drexel@uga.edu

Associate editor: Marisa Drexel

Production managers: Tessa Greenleaf, Desiree White

Editorial assistants: Rebecca Arnall, Jon Durden, Ana Kabakova

The Global Text Project is funded by the Jacobs Foundation, Zurich, Switzerland.

This book is licensed under a Creative Commons Attribution 3.0 License.

http://creativecommons.org/licenses/by/3.0/
mailto:drexel@uga.edu?subject=Cognitive%20Patterns:%20Problem-Solving%20Frameworks%20for%20Object%20Technology

Table of Contents
About the authors... 5
Foreword... 6

Part one: Introduction to cognitive patterns and KADS Object... 8

1. Introduction to cognitive patterns...9
Organization of this book.. 10
Introduction to cognition.. 11
Cognition summary... 18
The rationale for using cognitive patterns.. 18

2. Introduction to KADS Object..26
KADS Object background... 26
Overview of KADS Object model components... 28

Part 2: KADS object model development... 47

3. Knowledge elicitation techniques for cognitive models...48
Knowledge acquisition bottleneck... 50
Knowledge elicitation techniques.. 50

4. Mapping cognitive patterns to objects..58
Mapping to objects overview.. 58
Mapping concepts to objects: overview.. 59
Mapping examples: KADS models... 60
Mapping examples: object model (static model)... 64
Mapping examples: object behavior (dynamic model).. 66

5. Other uses of KADS Object.. 71
Business process modeling... 71
Developing enterprise metamodels.. 72
Knowledge management.. 73
Patterns and use cases.. 73
Identifying/developing business rules... 74
Developing user requirements.. 75
Identifying skill set requirements... 75
Training development... 76
Building case bases... 77

Part three: Applied cognitive patterns: best-practice models and case study...........................78

6. Best practice: technical architecture... 79
Purpose... 79
Definition.. 80
Dimensions of technical architecture.. 80
Business case for technical architecture.. 82
Technical architecture: traditional versus cognitive approach... 83
Other considerations.. 84
Best-practice pattern: technical architecture... 85
Technical-architecture development pattern.. 86

7. Best-practice reuse...97
Purpose... 97
Definition.. 97
Levels of abstraction and reuse.. 97
Business case for a pattern approach to reuse... 98
Object-model reuse environments and repositories.. 99
Pattern repositories.. 99
Best-practice pattern: reuse... 100

8. Best practice: testing OO systems...108
Purpose... 108
Definition.. 109
The business case for a pattern approach to testing.. 109

Software testing: traditional vs pattern approach.. 110
Best-practice pattern: software testing.. 111
Software testing metamodel.. 112

9. A retail banking example... 125
Background... 125
Project structure.. 126
Phase II.. 132

Appendix A: Library of problem-solving templates... 140
KADS Object problem solving template taxonomy.. 140

Appendix B: Definitions of selected PST operations.. 162
Appendix C: Glossary...164

This book is licensed under a Creative Commons Attribution 3.0 License

About the authors

Robert Konitzer has worked in information technology since 1986, with a focus on the pragmatics of software

development. He has worked extensively on the architecture and design of distributed client/server systems since

1989. He holds an MBA degree with an emphasis in MIS and Operations Research from the University of Denver

(Colorado, USA) (Bob_Konitzer@clrmnt.com).

Alexander Rush has held a variety of positions in information technology since 1983, with an emphasis in

knowledge analysis and object-oriented analysis and design. He has been a practitioner of KADS Object for the past

six years, with experience in cognitive modeling applied to object-oriented analysis and design, knowledge

engineering and management, and enterprise object modeling (Alex_Rush@clrmnt.com).

Michael K Crist has worked in information technology since 1983. He has participated in all phases of object-

oriented (OO) software development, including project management, testing and performance engineering, object

modeling, and OO technical and application architecture design. He holds degrees in anthropology and biostatistics

(Michael_Crist@clrmnt.com).

Karen M Gardner, Ph.D., has worked in information technology since 1977 and with objects for over 10 years.

She specializes in object-oriented analysis/design, distributed intelligent objects, cognitive modeling of business

processes, knowledge analysis and project management. She has participated in all phases of the life cycle of object-

oriented projects (Karen_Gardner@clrmnt.com).

Bobbin Teegarden has been a business engineering consultant and IT (information technology) professional

longer than she cares to admit. Her current specialization is in enterprise knowledge modeling of complex systems

and business application architecture and design using object-oriented and Expert Systems techniques. Her

professional background experience has spanned systems engineering to management consulting. She is currently

working on applying complexity and chaos theories to business modeling and application architecture

(teegardenb@aol.com).

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 5 A Global Text

http://creativecommons.org/licenses/by/3.0/

This book is licensed under a Creative Commons Attribution 3.0 License

Foreword

As systems become more complex, the human limitations to comprehending system requirements become more

evident. Since we cannot develop appropriate solutions if we do not understand the problem, human understanding

is the key ingredient.

Cognitive Patterns addresses this central issue by providing techniques for system specification that are based

on our human facility of thinking and reasoning. As such, it does not model system requirements in terms of

programming languages and platforms. Instead, it models the way reality is understood by people. Furthermore,

this "cognitive" approach permits us to analyze any area of human reality—not just that of data processing. Using

the techniques described in this book, we are no longer restricted to data processing applications. We can develop

object-oriented systems that involve the interaction of machines, people and computers.

Cognitive Patterns not only shows us how to develop cognitive-based systems, it provides a comprehensive

series of best-practice models and case studies. The book supplies patterns for problem solving, teaches by

example, and is based on the firsthand experience of its talented team of authors.

This is an important book for every system developer. It defines how the next generation of systems will be

developed.

—James J. Odell

Acknowledgment

We wish to express our sincere thanks to the many individuals who enabled us to complete this book, including

our families, friends and professional colleagues in the object-oriented community. Susan Blew of Wells Fargo and

Company provided a critical review of early drafts of the manuscript. We wish to thank her especially for her

consistent support, friendship and confidence in our work.

Jim Odell has provided the basic premises of our object-oriented thinking and has graciously given many hours

of his time in helping us develop the ideas presented in this book.

Jim Trott, a KADS evangelist and practitioner, has provided helpful review and commentary, strange humor,

and the case study examples from Boeing included in the “Other uses of KADS Object” chapter.

Bill Cathcart, an early adapter of KADS techniques applied to knowledge-based and object-oriented systems, has

provided ongoing professional guidance, collaboration and lively political debate.

Don McCubbrey of the University of Denver (Colorado, USA) has provided mentoring and guidance in

navigating the evolving and dynamic waters of technical consulting.

There are several clients we would like to acknowledge for their support of our work; we have drawn much of the

material in this book from them. They are:

Wells Fargo and Company, AT&T, Northrop Corporation, The Boeing Company, Naval Surface Weapons Center,

and US West, Inc.

Finally, we wish to acknowledge the two other individuals who provided invaluable assistance in completing this

book through help in proofreading, editing, graphics and technical advice: Courtney Broadus and Michael DeCurtis.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 6 A Global Text

http://creativecommons.org/licenses/by/3.0/

About the authors

Dedications

To Suzanne, Rachel and Nina, for their love, patience and understanding during many late nights—AR

To Dawne, Hilary and Lauren Crist—MC

To June Singer, who really started it all—KG

To Jean, Mimi, Mac and Drew (age 1) who "prowled and growled" throughout the entire effort—BK

To Porter—BT

7

This book is licensed under a Creative Commons Attribution 3.0 License

Part one: Introduction to cognitive patterns and KADS Object
Summary

Part one consists of:

• “Introduction to cognitive patterns”

• “Introduction to KADS Object”

These chapters will provide the reader with basic knowledge relating to the concepts and terminology of

cognitive patterns, the origins and academic background behind theories of cognition, and the value of cognitive

patterns as an approach to modeling business systems and processes. In addition, KADS Object will be introduced

as a specific approach to cognitive pattern modeling that enables object-oriented views of cognitive patterns. KADS

Object will be explained in detail, including specific examples of the deliverables.

Objectives

The objectives of part one are:

• to provide the reader with a basic understanding of cognitive patterns and cognitive modeling concepts and

terms

• to explain the uniqueness of cognitive patterns as an approach and their value in modeling business systems

and processes

• to introduce KADS Object (a non-proprietary set of cognitive patterns) as a specific framework for enabling

object-oriented (OO) analysis and design

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 8 A Global Text

http://creativecommons.org/licenses/by/3.0/

This book is licensed under a Creative Commons Attribution 3.0 License

1. Introduction to cognitive
patterns

Introduction

The term "cognitive" refers to the human facility of thinking and reasoning (Fetzer, 1992; Goldstein and

Blackman, 1978; Hashway and Duke, 1992; Langacker, 1987). Our fascination with how we think, reason, and solve

problems has resulted in over 2000 years' worth of written reflections on these topics. During this century, the

study of cognition has focused on several themes, including childhood development (e.g. how do we learn to read

and understand what we read?), ways of coping with the limitations of the human mind (e.g. development of

computers that can calculate at speeds far exceeding the human brain), and cognitive models (e.g. conceptual

models of how we view the world) (ISKO Conference, 1992; Wagman, 1991).

It is the last topic above, cognitive models and their application to organizational and system processes, that

serves as the basis for this book. Examples of simple cognitive models are shown in Figure 1.1. A logger's view of a

tree is different from an artist's view of the same tree, which is different from a potential Christmas tree purchaser's

view.

The term "cognitive pattern" refers to recurring templates that humans use during problem solving/reasoning

activities. For instance, a diagnostic pattern guides our efforts when we attempt to discover the cause of a problem.

"Design” patterns, as used in the OO (object-oriented) community, are generally more detailed and would in many

cases "instantiate" cognitive patterns. This subject is covered later in the following chapters.

Figure 1.1: Three perceptions of a tree.

It is the premise of this book that the notion of cognitive patterns, applied to organizational and system

processes in business, can facilitate a deeper understanding of these processes and more effective management of

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 9 A Global Text

http://creativecommons.org/licenses/by/3.0/

1. Introduction to cognitive patterns

the complexity of these processes. It is these benefits that serve as the foundation of the business case for using

cognitive patterns as a framework for object-oriented projects.

This book discusses a specific approach to the use of cognitive patterns, Knowledge-Acquisition and Design

Structures (KADS) Object, that is used very effectively in conjunction with OO development. Therefore this

approach should not be interpreted as "yet another OO analysis and design methodology". Rather, KADS Object

offers a unique "cognitive pattern lens" framework from which to view business and system processes. Its use in

concert with any OO methodology leads to the creation of robust, understandable and testable OO models and

systems.

KADS Object provides one demonstration of a "cognitive pattern" model—a demonstration that is based on a

way that humans define and solve problems. Figure 1.2 illustrates the point that applying a KADS Object cognitive

"lens" with which to view the four areas covered in this book (OO systems, OO technical architecture, OO business

process modeling and OO knowledge-based systems) is but one point of reference. There are other cognitive lenses

available, each of which emphasizes a different aspect of the problem or process under examination. For instance,

one can study a cognitive model from the point of view of the metaphors which are used to describe it. In addition,

there are other non-cognitive ways of viewing the four areas mentioned above (e.g. data-flow diagrams), all of

which can provide value. However, these views provide a different perspective from the perspective offered by

cognitive patterns.

Figure 1.2: Different lens used to view objects.

Throughout history, many analytical models and views have been developed that might be labeled cognitive only

in the sense that humans developed them. However many of these views are not considered cognitive from our

perspective because humans do not innately reason nor think in these terms. An example of this kind of view is

probability theory. Probability theory has proven very helpful in overcoming some of the limitations of the way

people think but is not in itself cognitive. Humans do not think in terms of formal probability. Human cognition has

its strengths and weaknesses, and to say that something is cognitive does not necessarily indicate superiority.

However, it is the premise of this book that the advantages of human cognition can be used to facilitate our

comprehension of the complicated systems (automated and manual) with which we work.

Organization of this book

Our goal in writing this book is to introduce the notion of cognitive patterns, providing evidence for its value to

object-oriented projects based on our experience. This book should be considered introductory to the subject and

serve as a reference guide. The primary intended audience for this book is OO practitioners who are interested in

the modeling and development of OO systems (especially large, complex systems), individuals interested in

10

This book is licensed under a Creative Commons Attribution 3.0 License

modeling business processes as collaborating objects, and those interested in knowledge management. The book is

organized into three major sections: introductory chapters on cognitive patterns (Part 1); explanatory chapters

relating to our specific approach to cognitive modeling OO systems, KADS Object (Part 2); and finally chapters

relating to best practice applications of KADS Object (Part 3).

Part 1 introduces the topic of cognition, mental and connectionist models, domains, frameworks, cognitive

maps, and design patterns. KADS Object is also presented in some detail as a specific approach using cognitive

patterns, including the model structures and the process of mapping to objects. The knowledge elicitation

techniques helpful in building the KADS Object patterns are covered in the chapter titled “Knowledge elicitation

techniques for cognitive models”.

Part 2 examines the specific mappings from the KADS Object model components to OO design elements such as

object types, collaborations and behaviors. Also, the diverse areas beyond OO analysis and design to which KADS

Object has been applied are explored.

Part 3 examines cognitive patterns for typical OO development life-cycle activities including testing, technical

architecture and reuse. This section concludes with a case study example, illustrating the interrelationship between

these activities and the benefits of using a cognitive pattern approach throughout the life cycle.

Introduction to cognition
Mental models vs connectionism

To understand and appreciate the power of cognitive models, and to provide a context for the rest of the book, a

brief visit to the sometimes recondite land of cognitive research is required. Although there are varying and hotly

contested views of the notion of the mind, the concept of "representation" (i.e. cognitive models) is central to each.

Individuals construct internal mental images (i.e. cognitive models) of their thoughts and views of the world in

order to make sense of the continual input with which they are assaulted. Figure 1.3 illustrates a kind of internal

mental image (a file folder), which an individual might commonly use to categorize a number of facts. Researchers

speak of the architecture of the mind, an architecture that contains various cognitive models; characteristic ways in

which individuals conceptually model (i.e. organize, structure, and view) their environments. There is evidence that

the ability to conceptually model appears to be innate in humans (Anderson, 1983; Fodor,1983; Johnson-Laird,

1983; Lakoff 1987). However, the interpretation we give to the models appears to be culturally defined (Lakoff,

1987; Lakoff and Johnson, 1980; Lakoff and Turner, 1989). For instance, according to some researchers (Lakoff,

1987), a cognitive model known as the "front/back" orientation is found in all cultures. All humans have an innate

capacity to view things as having fronts and backs. However, in western culture our notion of what constitutes, say,

the front of a house varies from what another culture may perceive as the front of a house. So the application of the

"front/back" model varies among cultures, but the underlying meaning remains identical.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 11 A Global Text

http://creativecommons.org/licenses/by/3.0/

1. Introduction to cognitive patterns

Figure 1.3: A mental model for categorizing facts.

There are two current competing theories of the mind concerning internal cognitive representations: mental

models and connectionism. Mental models were proposed by Johnson-Laird (1983). He suggested that individuals

innately construct models of the contents of problems, setting up an internal diagram of a situation that is

consistent with the given facts of the problem. In other words, a mental representation is created and manipulated

to predict and/or cause an outcome.

"Tokens" is the term used to represent objects in the world that are manipulated internally. These mental

models may be direct analogs to real-world situations or states, as might occur in a simulation model. An opposing

opinion is that the internal representation is not necessarily isomorphic to the external world, but is a result of an

internal understanding of the external world. An artist, for instance, may see a landscape and paint the feelings it

evokes rather than painting a realistic portrait of the scene. The idea of mental models was popularized in Senge's

book (1990), where the author addresses the set of assumptions (mental models) we bring to any encounter, which

then affects the outcome (positive and negative). Meetings held with people who hold different mental models can

be stressful as well as stimulating. Figure 1.4 shows various mental models held by individuals during a

hypothetical business meeting. One individual views the meeting as a battleground, while others view it as a

playground or a sporting event. Inappropriate mental models (such as the "everyone is out to get me" mental

model) can cause duress to the individual maintaining that mental model and to the individuals with whom he

interacts.

Figure 1.4: Mental models used during a business meeting.

12

This book is licensed under a Creative Commons Attribution 3.0 License

The mental model approach tends to view the mind as a kind of digital computer, with input, output, storage,

and processing components, and an emphasis on the internal structure (Block, 1990; Fodor, 1983; Fodor and

Pylyshyn, 1988). The competing theory—connectionism (Churchland, 1989; Hinton, 1993)—claims that neural nets

(a connection of nodes and links related by associations) provide a more realistic model of how the brain works

(and hence how the mind works). Figures 1.4 and 1.5 illustrate the two approaches. Figure 1.4 accentuates the

structure of the mental models resident within the mind of the participants of the business meeting. Figure 1.5

shows a simplified net which emphasizes the relationships between the nodes of a hypothetical connectionist model

held by a participant in the same business meeting, also resident within the mind. The role of cognitive models in

human problem-solving has been more thoroughly explicated in the mental model literature than within the

connectionist literature. It should also be noted that variations on these two major themes exist in both ways of

thinking. The specific cognitive patterns addressed in this book possesses characteristics of both, but are presented

as examples of mental models.

Several different categories of cognitive patterns/models have been identified (based on both the mental model

approach and the connectionist-model approach), which emphasize one or more of the various aspects of human

problem solving and which are pertinent for this book. Table 1.1 briefly describes the cognitive patterns/models

which will be discussed in the remainder of this chapter.

Table 1.1: Types of cognitive models.

Domains Goals/principles/reasoning associated with recurring situations; serve as

explanatory structure for expectations regarding a situation, as in "sorting

activities".

Frameworks Domains with additional context information, as in "sorting mail"

activities.

Cognitive Maps Frameworks that are oriented towards wayfinding; finding one's way

through a problem, as in "sorting mail when address is incomplete".

Patterns Detailed, very context specific instantiations of frameworks, as in “sorting

by zip codes”.

Domains

There is a relatively recent trend within cognitive science to study "domains" (Herschfeld and Gel, 1994).

Domain is the name given an innate (or perhaps partially acquired) kind of cognitive pattern used by a perceiving

individual that identifies and interprets a class of phenomena assumed to share certain properties (e.g. sorting

activities). Implied in this definition is the idea of static and dynamic components. For instance, an individual's

approach to sorting includes goals, procedures, and a set of core principles that support reasoning about the

concepts found in the domain associated with sorting. Every individual uses a variety of these domains. Domains

function as a stable response to a set of recurring and complex problems, as in the need to sort items efficiently and

effectively. One might envision, then, a set of cognitive patterns called domains that are available to individuals that

assist them in making sense of the world, especially making sense of recurring situations.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 13 A Global Text

http://creativecommons.org/licenses/by/3.0/

1. Introduction to cognitive patterns

Figure 1.5: Business meeting mental models example.

When faced with a situation or problem, we immediately begin to filter and classify the input in order to better

manage the information overload created by the influx of data from our situation or problem. Domains are used to

partition (i.e. classify) the input by serving as explanatory frames. The structure of domains is not contingent on a

particular language, nor is it necessarily accessible to consciousness. The structure of domains appears to be an

innate mechanism that reflects the specific relations that exist between the world and our knowledge of it. The

content is often culturally dependent. For instance, although the ability to sort appears to be universal, sorting

criteria differs widely among different cultures. Figure 1.6 shows an outline of a dwelling as an example of a

domain. Although the outline does not show details, the outline does serve as a kind of explanatory frame of

expectations regarding our knowledge of dwellings.

Culture, and the specific problem to be solved, defines the content. For example, the domain of grammar (rules

that prescribe the use of language) exists in all cultures, but the content of the grammar varies from language to

language. Chomsky (1980), however, posited the existence of a universal grammar (an example of a very high-level

domain) that would apply to all languages. He based this belief on his clearly articulated notion of domain

cognition. If one continues to generalize, one must inevitably discover a generic domain pattern that would apply to

all examples of that domain pattern (however, there is a substantial risk that the generalization can become so

vague as to eventually become content free). The most important aspect of domains (from an OO perspective) is

that they function as an organized background (i.e. a realm or a context) against which concepts or objects can be

identified and classified, and behavior predicted.

Examples of higher-level domains include the aforementioned grammar, designing a tool, or planning a

meeting. Examples of lower-level domains include our understanding of notions such as containers, writing

utensils, and knives (what they are, how they work, what we can do with them).

Unfortunately the term domain has a more narrow definition in computer science, where it refers primarily to

the idea of a body of knowledge in some field or subject area, or the set of objects for a given area of interest (e.g.

the domain of a billing system, the domain of operations research, or the domain of telecommunications). By the

definition given previously, the field of operations research would incorporate a number of domain patterns.

Domain patterns are not specific to a field and thus would exist in other fields as well. For instance, the domain of

"sorting" occurs in most, if not all, fields of endeavor.

14

This book is licensed under a Creative Commons Attribution 3.0 License

Frameworks

The notion of a framework has been defined in so many various ways, particularly within the OO community,

that it is difficult to present a definition that fits all of the examples of frameworks. From a high level of abstraction,

framework patterns have the same general attributes as a domain and can probably be viewed as domains with

additional context information. Figure 1.7 illustrates the outlines of various kinds of dwellings, showing more

specificity than Figure 1.6. Figure 1.7 can thus be viewed as a kind of framework when compared with the more

generalized Figure 1.6.

Figure 1.6: Domain model of a "dwelling".

Figure 1.7: Frameworks for dwellings.

Frameworks provide a more formal description than would usually apply to a domain. From a systems point of

view, frameworks can be considered organizations of situation types that are known to occur commonly during a

system life cycle, and which constitute an organizing structure for a system (Mayer et al., 1995). Frameworks have

also been described as "medium scale, multipurpose, reusable class hierarchies that depend only on the abstract

interfaces of various components and have proven to be valuable tools for simplifying and accelerating further

design" (de Champeaux et al., 1993). Firesmith and Eykholt (1995) define frameworks as "any large, reusable,

generic specification, design, code, and test pattern of part of an application, consisting primarily of classes

(possibly organized into clusters and sub-frameworks)". At a low level of abstraction, frameworks have been

defined as application-specific class libraries that, by default, structure the problem solution (Henderson-Sellers,

1992). The most cognitive of the above definitions is Mayer's, which addresses the role of frameworks as providing

an organizing structure.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 15 A Global Text

http://creativecommons.org/licenses/by/3.0/

1. Introduction to cognitive patterns

Figure 1.8: A cognitive map.

Cognitive maps (Chown et al., 1995) can be considered a specific kind of framework, providing a "mapping"

context for applicable domains. Cognitive maps are specialized representations that humans use for "wayfinding".

These maps serve two functions. They represent the environment, and they allow a human to move from place to

place within mapped environments. While this notion is usually reserved for actual attempts to find one's way in

the world, they can be used to describe abstract topics, such as finding one's way through a problem. Figure 1.8

illustrates the notion of a cognitive map for a diagnostic problem. Cognitive maps, as examples of frameworks,

consist of four components:

• landmarks (markers for orientation and determining the current location);

• paths (a route to a goal consisting of a sequence of landmarks);

• direction (changing one's relative position in response to a sighting of a landmark or, conversely, because

no landmark is visible);

• overviews (provides "bird's-eye views", enabling large-scale reasoning about one's environment).

The term "cognitive map framework" is particularly appropriate for the kind of cognitive pattern to be discussed

in the remainder of the book. "KADS Object" is a framework in the sense that it provides a problem-

solving/reasoning context (organizing structure) for various domains. For example, the domain of "sorting" is

viewed as having a problem-solving/reasoning kind of organizing structure guiding the "sorting" activity. KADS

Object is a kind of cognitive map in that it:

• predicts what landmarks will occur during the problem-solving activity, in terms of the type of objects

expected and type of behavior expected at points along the problem-solving way;

• illustrates a proven directed path to follow based on the kind of reasoning patterns used (e.g. diagnosis);

• allows an overview of the problem in terms of the entire set(s) of concepts/objects required and the overall

reasoning pattern that utilizes the concepts/objects.

Patterns

Christopher Alexander et al. are usually given credit for introducing the notion of "design patterns" in their book

A Pattern Language, which describes the use of patterns in architecture (Alexander [1977]). The software

community, especially the OO community, borrowed the idea of patterns and applied it (generally) to detailed

descriptions of common activities required of objects. Patterns, however, exist at all levels of abstraction. In this

book, we differentiate very high level patterns (domains) from very low level design patterns. For instance, the

16

This book is licensed under a Creative Commons Attribution 3.0 License

"composite pattern" (Gamma et al., 1995) composes objects into tree structures to represent part-whole hierarchies.

A pattern is thus a "description of communicating objects and classes that are customized to solve a general design

problem in a particular context" (Gamma et al, 1995). Firesmith and Eykholt (1995) define patterns as "any

reusable architecture that experience has shown to solve a common problem in a specific context". (This definition

is more global in intention, resembling a high-level framework rather than a low-level pattern). One of the most

cognitive definitions of patterns is Riehle and Zullighoven's (1996) description of patterns as "abstractions from a

concrete form which keep recurring in specific nonarbitrary contexts". A pattern usually has several essential

elements: the pattern name, the problem to which it applies, the abstract solution, the context, constraints, and the

consequences of applying the pattern (the results and tradeoffs). Continuing the dwelling example, Table 1.2

illustrates an example of a pattern for entering the front door.

Table 1.2: Simplified pattern.

Pattern for opening front door

Context: Human, house, door

Problem: How to open front door

Constraints: Access to key, alarm status

Solution: Insert key into lock. Turn key to the left, while holding doorknob...

Table 1.3: Examples of design patterns associated with sorting mail.

1. Pattern for reading zip codes

2. Pattern for sorting by:

post office

street address

zip code

3. Pattern for sizing of:

envelopes

postcards

4. Pattern for determining postage

5. Pattern for handling unreadable addresses

Patterns are cognitive in the sense that humans often think in terms of patterns (Jackendoff, 1994). We

recognize patterns and we match patterns on a daily basis. For instance, the design composition pattern represents

a generic ability people have to place selected items in their environments into a part-whole structure.

Design patterns provide detailed, reusable and procedural descriptions of design activities that take place within

a reasoning or problem-solving framework. Thus, design patterns can be applied to, and organized around,

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 17 A Global Text

http://creativecommons.org/licenses/by/3.0/

1. Introduction to cognitive patterns

frameworks, as shown in the "sorting mail" example in Table 1.3. In order to instantiate the sorting mail

framework, design patterns, such as "reading zip codes", can be used to address the details of implementing the

framework. Design patterns can be generic (as in the "composition" pattern), or specific, as in the example in Table

1.3, with accompanying advantages and disadvantages.

Cognition summary

The notion and utilization of cognitive patterns is, in fact, part of the OO world today, beginning with the idea of

objects themselves being promulgated as more cognitive than traditional approaches. Humans tend to think of their

environment as containing objects with certain characteristics that can be manipulated. Cognitive patterns provide

the context, the background, the organizing principles that allow individuals to structure and manage these

complex objects.

The use of cognitive techniques in information technology is also not new (Andriole, 1995; Loucopoulos, 1992;

Rasmussan et al., 1994). However, these techniques have been used primarily to address human factors, GUI

design issues or knowledge-based systems. Increasingly, however, cognitive approaches are being applied to other

aspects of information system development in an attempt to find innovative ways of dealing with the ongoing

"software crisis".

Domains, frameworks, cognitive maps and design patterns all represent examples cognitive patterns.

Frameworks are considered to be specific, context-driven examples of cognitive patterns called domains. The term

"cognitive map", representing a kind of framework, best describes the KADS Object approach presented in the

remaining chapters. Design Patterns, detailed contextual descriptions of object behavior and communication,

instantiate frameworks, although in some respects, selected patterns can also be considered low-level frameworks.

In other words, the distinguishing feature that differentiates one type of pattern from another is based on the level

of abstraction. The extent to which a domain differs from a design pattern is dependent on the level of detail and

specificity required.

The rationale for using cognitive patterns
Overview of cognitive approach benefits

The foregoing description may be intellectually intriguing, but in order to convince OO analysts and designers to

learn yet another modeling technique, the authors must provide practical and important reasons for its use in order

for a cognitive pattern approach to be considered helpful. A compelling case must be presented regarding the

application of cognitive patterns to OO systems because intuitively we think that introducing yet another modeling

technique increases our difficulties, rather than diminishing them.

Just as there is a search for the unified field theory in the hard sciences that would explain and reconcile other

theories, there is a search within computer science for the one representation scheme that will mirror all aspects of

reality.

Unfortunately there are many views of reality, and each model will reflect only selected aspects of some reality.

It is probable that we will always require more than one model to obtain a holistic view of an organization or a

process or a system, despite the problems associated with impedance mismatch and the maintenance of consistency

among various views. The choice of views should be motivated by the particular system profile and constraints (e.g.

database design may need to be data-centric). Eventually we may have access to metamodels, where each view is a

kind of building block that fits with other views in a straightforward fashion. Each view then shows a particular

18

This book is licensed under a Creative Commons Attribution 3.0 License

frame of reference. A data view would provide one perspective; a business process view would provide another. As

mentioned previously, a cognitive pattern view can identify and describe a perspective that reflects the reasoning or

problem-solving activities of a system or organizational process. A cognitive pattern view can be used to model

system and/or organizational processes because:

• the processes themselves are obviously based on reasoning/problem-solving activities;

• the analyst, designer, or the system stakeholder can understand the processes better when they are

described in this manner.

For instance, a logistics process is primarily based on reasoning/problem-solving, whereas a payroll process is

primarily concerned with posting and the calculation of relatively simple algorithms. However, an analyst may

choose to model the payroll process as if it were based on more complex reasoning or problem-solving activities

because the view helps clarify an issue, because it makes more sense to users when it is presented in such a fashion,

or because it is the fastest way of identifying the objects required for a new payroll system. (It should be noted

however, that the initial understanding of how a payroll process works is the result of a reasoning/problem-solving

process).

The primary reasons for using cognitive patterns as a framework for object oriented projects are:

• to successfully manage complexity;

• to better identify the scope and boundaries of the proposed project and to provide a vocabulary by which

the scope and boundaries can be discussed;

• to quickly identify the necessary and sufficient object types required by the proposed project;

• to emphasize and incorporate the role of knowledge within an organization;

• to enhance the consistency and validity of class design, and to enable novices to become quickly proficient

at class design.

Each of these reasons is discussed below. Although subsequent chapters will discuss the KADS Object

Framework in detail, a simple version of a KADS Object cognitive pattern called "Suitability Assessment" is

introduced in Figure 1.9 to assist in understanding the following sections.

Figure 1.9: Suitability assessment.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 19 A Global Text

http://creativecommons.org/licenses/by/3.0/

1. Introduction to cognitive patterns

Figure 1.10: Suitability assessment example.

Figure 1.10 illustrates a simplified example of this cognitive pattern that assumes the pattern is being applied to

an insurance process. The rectangles predict the type of data/information required and the ovals predict the kind of

collaborative operations or behavior that will use the data or information. The arrows reflect the general flow of

reasoning. There is a tendency to read these patterns as data-flow diagrams. They are not data-flow diagrams,

however; they represent the underlying reasoning pattern of a particular approach to solving problems. Suitability

assessment is a cognitive pattern which is used when a problem solver is attempting to make a decision, usually

binary (e.g. "yes/no", "accept/reject"). A key ingredient of this model is that the decision can be changed based on

compensating factors. It should be noted that the terms used to describe the rectangles and ovals are changed to

reflect the type of information found within an actual project (e.g. a suitability assessment model in manufacturing

will use different terms than the same model found in the health field). The project-specific terms, however, will

have the same underlying meaning of the terms found in the basic pattern.

KADS Object consists of 21 of these cognitive patterns that represent frameworks for organizing and cognitively

modeling one's environment (system processes, business processes).

Managing complexity

A primary argument for applying cognitive patterns to OO projects is the need for analysts/designers to cope

with increasing amounts of complexity in the projects in which they are involved. Systems are becoming more

complex. Complexity is often defined formally as a function of the length of the shortest message conveying certain

information, or the length of time it would take, at a minimum, for a standard universal computing machine to

perform a particular task (Gell-Mann, 1995). Informally and intuitively, complexity is something we know we are

experiencing when we feel overwhelmed and lost in the midst of a seemingly over-abundant amount of information,

or when we struggle to grasp the interrelationships that exist within a system. The use of cognitive patterns

presents a view of organizational or system processes that provides intellectual tractability by exploiting the

reasoning/problem-solving aspects of the processes. For instance, if one of the processes of a project is identified as

a Suitability Assessment pattern, the cognitive pattern for Suitability Assessment can be used as a template to

structure and organize this particular process. (These cognitive pattern templates are discussed at length in the

20

This book is licensed under a Creative Commons Attribution 3.0 License

“Introduction to KADS Objects” chapter). The ability to apply these patterns at varying levels of abstraction is of

great benefit, depending on the need of the analyst/designer. Cognitive patterns are generally applied at a very high

macro-level (e.g. the patterns found in the finance process for a large, international firm) or at a somewhat lower

level (e.g. the patterns associated with internet security activities). Because these patterns are cognitively based, we

have an intuitive understanding of them. Hence, they contribute to comprehension, as opposed to creating yet more

layers of confusion.

Determining scope

Beginning with the premise that knowing the scope (an understanding of the desired functionality and

boundaries) of a system is required to successfully develop a system, we can proceed to the question, "How is the

scope obtained?" In small simple systems the scope is easy to grasp or can be explored by prototyping and user

requirements. In medium to large systems, we enter the murky world of complexity where the scope is often vague

and difficult to discern, and where user requirements are ill structured. Prototyping user requirements and use

cases can assist in determining scope, but in our experience, prototyping user requirements and use cases cannot

serve as the sole determinants for scoping projects. It is not always clear what activities are within scope, because

the original scoping document is not sufficiently clear and detailed. Prototyping can result in an endless process of

scope creep with little functionality underlying screen design. After users have agreed to a screen design,

implementing the underlying functionality can result in budget and schedule overruns, resulting in rapid

application disasters (RAD). In addition, requirements change—a fact of life. A context is necessary in which to

think, structure, evaluate and communicate about scope and modifications to scope. For instance, how does an

analyst/designer know what ramifications a proposed change may have to the existing scope? In addition, no

consistent rigorous notation exists for communicating about scope. Scope and boundary statements are often

narrative in form, with a laundry list of desirable features associated with the general goal of the project. The

inability to associate these features with the work processes of individuals usually results in the automation of

specific functionality rather than the more desirable state of automating a business process.

Cognitive patterns can be used to structure and provide the context for use cases, user requirements, to define

scope and to serve as the vehicle of communication for stakeholders regarding scope modifications. In addition, the

patterns can be nested (decomposed) to any desired level. For instance, the "compare" operation within the

suitability assessment pattern has other cognitive patterns embedded within it, resembling the nested boxes shown

in Figure 1.11.

Figure 1.11: Embedded models.

The modeling approach described herein is used to provide a problem-solving, results-oriented, knowledge-

using pattern based context for scoping projects. It is based on identifying and cognitively modeling, the pertinent

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 21 A Global Text

http://creativecommons.org/licenses/by/3.0/

1. Introduction to cognitive patterns

business patterns within which the project will take place and then iteratively identifying and cognitively modeling

the subpatterns that are included in the proposed system. The process of identifying and cognitively modeling the

larger context, the patterns within which the project will take place, generally takes one to two days for large

projects. Scoping needs to begin within a larger context than the actual project, so that it is evident which

functionality/activities are to be included and which are to be excluded. Within a short period of time, the patterns

that belong to the actual project are identified and cognitively modeled. Once this has been completed, user

requirements and use cases can be tied to the patterns that represent the project processes. This is an iterative

process and the patterns serve as the vehicle for discussions on scope changes. For instance, a pattern within scope

might represent a process that makes a decision as to which statistical routine to use, given certain criteria and

constraints. User requirements and use cases (e.g. default values to be automatically entered) are tied to the actual

expected behavior of this pattern. For instance, in the Suitability Assessment model, user requirements and use

cases would be attached to each oval (e.g. What does the user want to see when a "compare" operation is occurring?

Who are the actors for this pattern?). When a scope change occurs with this process, it is evident which user

requirements and use cases are affected. Conversely, a new user requirement can lead to the rethinking of scope.

In another example, a project's stakeholders provided a preliminary scoping statement regarding the need for a

system to design parts for airplanes. Using the pattern approach, the processes that a designer uses to design parts

were identified at a high level (e.g. "Decide which analysis programs will be used during the design" [Suitability

Assessment pattern]). Using techniques described in the “Knowledge elicitation techniques for cognitive models”

chapter, the analyst would identify the patterns underlying each process and quickly modify the patterns for the

particular project, using an iterative or incremental approach. These patterns are then used by the project

stakeholders to decide which processes are within scope and to help define the boundaries. As the iterative or

incremental project continues, these patterns are used as a vehicle for discussion regarding modifications to scope.

Identifying objects and object behavior

Modeling of systems, particularly OO systems, has become a critical success factor. Modeling provides necessary

information for implementors. It serves several purposes, but generally modeling is a way of displaying and

structuring the object types that must be present, for example, in a system. The models also indicate object

behavior, multiplicity, and relationships. With a few notable exceptions, the identification of the pertinent objects

to be modeled is seen as a straightforward activity. One author suggests, for instance, that all one need do is find the

"nouns" that exist within the organization and that these nouns then serve as potential objects for the system.

Another author recommends finding the objects in documentation. With these ad hoc approaches to identifying the

object types that belong in a system or process, the specter of complexity and non-scalability appears. Perhaps

finding the nouns for small systems is possible, but in our experience, finding and ensuring that the correct objects

are available in large systems is a daunting task. In particular, when building large-scale OO enterprise models, the

identification of core object types and the mapping of objects to business processes can be a formidable task,

especially when the sources for objects are nouns and the reams of documentation that await the unwary. Use cases

help identify objects. However, in our experience, use cases need a context. Providing a context, such as a pattern,

avoids use case issues such as excessive numbers of use cases and use cases at varying levels of abstraction.

Our ability to build enterprise-wide OO models in less than six months with fewer than eight full-time

equivalents (FTEs) is based on our practice of applying cognitive patterns to scope and structure (i.e. provide a

22

This book is licensed under a Creative Commons Attribution 3.0 License

context for) business processes in such a way that the concepts (i.e. object types) and their behavior can be rapidly

identified. The resulting models are then quickly and transparently mapped to any object-oriented notation (the

process of mapping from cognitive models to Unified Modeling Language (UML) is discussed in detail in the

“Mapping cognitive patterns to objects” chapter). The cognitive models can be used at different levels of abstraction

to identify:

• the global or core object types that are needed to support all business processes;

• the object types that are specific to a business process;

• the object types that are specific to an application, and so forth.

By using the patterns as a knowledge-acquisition tool, the analyst/designer can structure the interviewing

process to elicit specific object types and behavior associated with a particular pattern. Identifying the required

object types, and associated behavior, becomes a relatively straightforward activity.

Incorporating knowledge

Knowledge is defined as the expert use of data or information; in other words, an expert knows how to access

data or information, where it is located, why it is needed and when it is needed. For example, in one situation a

number of fabricators on a shop floor had varying degrees of success in fabricating an instrument. It was discovered

during the modeling effort that although everyone used the same cognitive patterns, some individuals were experts

and some were not. What then made some fabricators expert and others not? After modeling the patterns found in

the processes they used, it was discovered that experts had more concepts available to them and also structured the

concepts differently. In addition, a few non-experts used different behavior than did the experts within the same

pattern. The training manual was also modeled, which disclosed that the cognitive patterns existent in the training

manual were significantly different than the patterns used by the fabricators. Upon completion of the modeling

effort, it became possible to develop a "best practice" set of cognitive patterns for the shop floor, which meant that

the expertise of the expert fabricators was incorporated into the methods used by all the fabricators. The cognitive

patterns developed for the shop floor captured and represented the key knowledge that was now accessible to

novices, where once it had only been available to a few talented individuals.

Every cognitive pattern has areas where expertise is particularly exhibited. For instance, a major source of

expertise in the suitability assessment pattern is knowing what compensating factors to use to overturn a

preliminary decision.

Knowledge can be communicated and distributed throughout an organization by the use of cognitive patterns.

Designing object classes

The mapping of framework pattern concepts and their behavior to object types and an object behavior notation

results in a class design that is cognitively based. Use cases and design patterns are also tied to these patterns

(discussed in later chapters). Because the mapping is relatively easy, a novice can be taught to do initial class design

in a very short period of time. The initial mapping only includes domain (in the computer-science sense) object

types, and through iteration and addition of nondomain-specific classes, the class design will be modified from its

initial structure. However, all class designs reflect the underlying cognitive patterns on which they were based. It is

then an easy task to determine why certain design decisions were made by accessing the cognitive pattern (design

traceability). We have also found that class designers maintain greater consistency of design when cognitive

patterns serve as the context.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 23 A Global Text

http://creativecommons.org/licenses/by/3.0/

1. Introduction to cognitive patterns

References

Alexander, Christopher, S. Ishikawa & M. Silverstein (1977). A Pattern Language: Towns, Buildings,

Construction. NY: Oxford University Press.

Anderson, J.R. (1983). The Architecture of Cognition. Cambridge, MA: Harvard University Press.

Andriole, S.J. (1995). Cognitive Systems Engineering for User-Computer Interface Design, Prototyping and

Evaluation. NY: Erlbaum.

Block, Ned (1990). "The computer model of the mind" in Thinking: An Invitation to Cognitive Science, vol.

3, D.N. Osherson and E.E. Smith, ed. Cambridge, MA: MIT Press.

Chomsky, N. (1980). Rules and Representation. NY: Columbia University Press.

Churchland, P.M. (1989). A Neurocomputational Perspective: The Nature of Mind and the Structure of

Science. Cambridge, MA: MIT Press.

Cognitive Paradigms in Knowledge Organizations (Aug. 26-28, 1992). Second Intl. ISKO Conference,

Madras, India.

de Champeaux, D., D. Lea & P. Faure (1993). Object Oriented System Development Reading, MA: Addison-

Wesley.

Fetzer, J., ed. (1992). Epistemology and Cognition, vol 6. Dordrecht: Kluwer Academic Publishers.

Firesmith, D. & E. Eykholt (1995). Dictionary of Object Technology. NY: SIGS Books.

Fodor, J. (1983). The Modularity of the Mind. Cambridge, MA: MIT Press.

Fodor, J. & Z. Pylyshyn (1988). "Connectionism and cognitive Architecture: a critical analysis." Cognition,

28, 3-71.

Gamma, E., R. Helm, R. Johnson & J. Vlissides (1995). Design Patterns: Elements of Reusable Object

Oriented Software. Reading, MA: Addison-Wesley.

Gell-Mann, M. (1995). "What is complexity?" Complexity, 1:(1), 16-20.

Goldstein, K. & S. Blackman (1978). Cognitive Style. NY: Wiley & Sons.

Hashway, R.M. & L.I. Duke (1992). Cognitive Styles: A Primer to the Literature. NY: Mellon Press.

Herschfeld, LA. & SA. Gel, ed. (1994). Mapping the Mind: Domain Specificity in Cognition and Culture.

London: Cambridge Press.

Hinton, G., ed. (1993). Connectionist Symbol Processing. Cambridge, MA: MIT/Elsevier Press.

Jackendoff, R. (1994). Patterns in the Mind: Language and Human Nature. NY: Basic Books.

Johnson-Laird, P.N. (1983). Mental Models. Cambridge, MA: Harvard University Press.

Lakoff, G. (1987). Women, Fire and Dangerous Things. Chicago: University of Chicago Press.

Lakoff, G. & M. Johnson (1980). Metaphors We Live By. Chicago: University of Chicago Press.

Lakoff, G. & M. Turner (1989). More Than Cool Reason: The Power of Poetic Metaphor. Chicago: University

of Chicago Press.

Langacker, R. (1987). Foundations of Cognitive Grammar, vol. 1: Theoretical Prerequisites. Palo Alto:

Stanford University Press.

Mayer, R., P. Benjamin, B. Caraway & M. Painter (1995). A Framework and a Suite of Methods for Business

Process Re-Engineering. College Station, TX: Knowledge Based Systems.

Rasmussan, J., A. Pejtersen & L. Goodstein (1994). Cognitive Systems Engineering. NY: Wiley.

24

This book is licensed under a Creative Commons Attribution 3.0 License

Riehle, Dirk & H. Zullighoven (1996). "Understanding and using patterns in software development" Theory

and Practice of Object Systems, 2(1), 3-13.

Senge, Peter (1990). The Fifth Discipline: The Art and Practice of the Learning Organization. NY:

Doubleday.

Wagman, Morton (1991). Cognitive Science and Concepts of the Mind: Towards a General Theory of

Human & Artificial Intelligence. NY: Praeger.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 25 A Global Text

http://creativecommons.org/licenses/by/3.0/

This book is licensed under a Creative Commons Attribution 3.0 License

2. Introduction to KADS
Object

KADS Object background

The cognitive pattern model presented in this book, KADS Object, is based upon a body of public-domain

research that was conducted in Europe from 1985 to 1994, funded by the ESPRIT Consortium. As such, it is

nonproprietary. The methods resulting from this research initiative are referred to in the literature as KADS

(knowledge acquisition and design structure) or CommonKADS. KADS was originally designed to serve as a

methodology for the development of knowledge-based systems, and in Europe this is still a major focus. It is

designed, in part, to facilitate the modeling of individual expertise. We have included numerous references to the

published material on the KADS research initiatives (de Hoog et al., 1992; Wielinga et al., 1992), and will not

attempt to provide further background on the basis or findings of the original KADS research efforts here. We

encourage those interested in the research basis for KADS Object to refer to the many articles, papers, web sites and

books on the subject (Tansley and Hayball, 1993; Hickman, 1991).

Description of KADS Object

KADS Object was created as an extension to KADS, to allow direct support for object-oriented decomposition

and a greater inclusion of research on human cognition. Our experience with KADS Object has shown that the basic

characteristics associated with knowledge and problem-solving at the person/individual level are also present at the

business-process, system-process and enterprise level. KADS Object is a cognitive pattern modeling approach that

views organizations, processes and systems as problem-solving, results-oriented, knowledge-using entities. As

discussed previously, it is based on the assumption that human beings use a set of cognitive patterns with which to

organize and filter their environment. In addition, because software products are created by humans, the

underlying patterns embedded in software also reflect this problem-solving, results-oriented, knowledge-using

view.

KADS Object has been applied successfully in four general areas:

• knowledge-based system modeling;

• as a cognitive pattern framework for OOA/D for system development;

• as a cognitive pattern framework for 00 enterprise business process modeling (existing and redesign); and

• as a cognitive pattern framework for 00 technical architecture modeling.

Other uses to which it has been applied (in a more limited fashion) include:

• specifications recovery (i.e. identifying the cognitive patterns embedded in non documented code and

building a cognitive model representative of the code, which then provides a more generalized set of

specifications);

• cognitive pattern modeling of existing training manuals, in order to compare training programs with

existing best practices; and

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 26 A Global Text

http://creativecommons.org/licenses/by/3.0/

2. Introduction to KADS Object

• cognitive pattern modeling of packaged solutions (e.g. Oracle Forms) to identify the patterns found in

Oracle Forms processes (e.g. shipping process), in order to compare them with an organization's similar

process.

KADS Object is fundamentally different from data modeling, traditional enterprise modeling, process modeling

and other modeling methods because it emphasizes the role of cognitive patterns. Specific techniques (covered in

the chapter on “Knowledge elicitation techniques for cognitive models”) must be employed in order to elicit and

model these cognitive patterns. The term "knowledge analysis" is used to describe the elicitation and modeling

activities that are required to describe the problem-solving patterns used by individuals, organizations, systems,

code or technical architecture (Gardner, 1995). Knowledge is defined as the application of human judgment to the

use of data and information. This knowledge is often embedded in business rules.

Table 2.1 shows a relatively simple example of the differences between data, information and knowledge.

Table 2.1: Data, information and knowledge.

Data 90, 81, 110, 117 Raw facts

Information Ql - $90,000, Q2 - $81,000, Q3 -

$110,000, Q4 - $117,000

Facts with a context

Knowledge Retail sales figures are

historically weak in the second

quarter, and stronger in the third

and fourth quarters.

Application of human judgment

to the use of data information and

knowledge.

As noted in the “Introduction to cognitive patterns”, KADS Object functions as an organizing structure and can

be used effectively to:

• help identify the cognitive patterns being used by individuals, organizations, processes and/or systems to

solve a problem, reach a conclusion or obtain a result (at any desired level of abstraction);

• provide a library of cognitive patterns, representing 21 distinct ways that humans structure their problem

solving;

• identify the pertinent objects that are associated with identified cognitive patterns;

• help in the development of the object class design, with the cognitive pattern(s)

• serving as the "architectural blueprints" for the design; and

• provide a structure that enables elicitation of knowledge and definition of requirements.

There are two distinct groups of model deliverables in KADS Object: the KADS model and the Object model. The

KADS model consists of four components: the concept descriptions, the pattern descriptions, the specific cognitive

patterns (sometimes referred to as "problem-solving templates"), and the strategic description. These four

components are interrelated and interdependent, and are collectively referred to as the "KADS Model". The Object

model portion consists of an object model, mapped from the KADS model, and represented in the object notation of

choice (map to UML). The object model typically includes at least two major design elements: a static (object

relationship) model, and dynamic (object behavior) models. Additional object notations can be developed from the

KADS model, such as state-transition diagrams and use cases. The remainder of this chapter will focus on the KADS

27

This book is licensed under a Creative Commons Attribution 3.0 License

portion only. A full discussion of the techniques and mappings to the Object portion is presented in the chapter on

“Mapping cognitive patterns to objects”.

Overview of KADS Object model components

Figure 2.1 illustrates the four components comprising the KADS Object model and their relationships. The

following discussion provides an introduction to each of the four components, followed by a more detailed

explanation of each individual component.

The "Concept Description Component" identifies and structures all the concepts used in each and every

cognitive pattern (called a "problem-solving template" in KADS literature), together with descriptions and

definitions of the concepts. A concept is defined as an idea (e.g. world peace), a tangible thing (e.g. automobile), an

intangible thing (e.g. unicorn), or an event (e.g. "end of month"). Concepts are the basic elements with which we

think and reason. The concepts are grouped and structured according to relationships. These relationships are

based on the role the concepts play in each pattern (problem-solving template). For instance, referencing the

Suitability Assessment template shown in the “Introduction to cognitive patterns” (Figure 1.9), the "compare"

operation generally requires concepts found in the "data values" rectangle (known as a "role"), to be structured in

"is_a" and "attribute" formats. The concept description reflects the content aspect of a cognitive pattern. The

identical pattern (problem-solving template) will have entirely different concepts in different subject areas. For

instance, as mentioned previously, the Suitability Assessment pattern (template) used in the insurance industry will

incorporate concepts that vary from the concepts found in the same pattern used in manufacturing. Eventually

these concepts will become the candidates for object types, object-type attributes and components (part-of) in the

object portion of KADS Object.

Figure 2.1: KADS Object component.

The "Problem Solving Template Component "consists of a set of diagrams of the cognitive patterns used by a

particular organization, process, system or individual. A library of templates exists consisting of 21 known patterns

(included in Appendix A); but problem-solving templates can also be developed from scratch. The templates

illustrate the underlying reasoning patterns used to solve a problem, reach a conclusion or obtain a result. A

"reasoning pattern" is defined as a reusable interior-to-the-mind path that is used to draw conclusions, based on

either an explicit or implicit understanding of the problem to be solved. Individuals tend to use the same reasoning

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 28 A Global Text

http://creativecommons.org/licenses/by/3.0/

2. Introduction to KADS Object

pattern when similarities are found between the characteristics of an existing problem and one they solved in the

past. A reasoning pattern is dynamic. The templates can be considered a kind of cognitive map, complete with

landmarks, paths and goals/objectives, that help guide the problem solver through the reasoning path for a given

situation. Problem-solving templates utilize specific subject area concepts that are required for successfully

obtaining a result (e.g. solving a problem, reaching a conclusion). Once identified, these concepts are placed in the

"concept description," which serves as a repository. The templates also show the operations that utilize the

concepts, and which are required to meet the objectives of the template. (These operations, all of which have

specific meanings [see Appendix B] will later serve as the source for object behavior.) These concepts and

operations, and their interactions, are described in detail in the "pattern descriptions" (one pattern description for

each template). Problem-solving templates can be nested to any desirable level of abstraction (similar to data-flow

diagrams). Each "operation/collaboration" within a template is a subpattern, with its own applicable problem-

solving template. For instance, the "classify" operation in the Suitability Assessment template reflects the

underlying presence of the "Classification" template.

The "Pattern Description Component" provides a textual explanation (with varying levels of detail) for the

problem-solving template diagrams. There is thus a pattern description for each template model. A pattern

description would, for instance, explain the precise role of specific concepts and detail the kind of

operation/collaboration that will affect those concepts.

Table 2.2a: KADS Object Component Description.

Model component Objective Description

Concept description

component

Construction of lexicon of

concepts and their

relationships

Definitions and hierarchical structuring

based on role concepts play in each

pattern/template

Pattern description

Component

Detailed textual description

of each of the problem solving

templates/patterns

Input concepts, output concepts (results),

and the operations/collaborations

manipulation the concepts for each

pattern/template

Table 2.2b: KADS Object Component Description.

Model component Objective Description

Problem solving

template/pattern component

Identification and modeling

of the reasoning

template/pattern(s) underlying

each business or system or

expert's process(s)

Predicts most important

operations/collaborations and predicts role of

concepts for each template/pattern

Strategic component Provide control information

for relationships (e.g.

sequencing) among and

Indicated any cognitive strategies which

would be used to guide behavior of a set of

patterns—strategies often modeled as a kind of

29

This book is licensed under a Creative Commons Attribution 3.0 License

Model component Objective Description

between patterns meta pattern whose function is to control other

patterns

The "Strategic Description Component" incorporates meta or control information that affects most, if not all, of

the patterns. For instance, the strategic component could model and manage the business rules and logic that

govern the sequencing of all pattern descriptions (and associated problem-solving template patterns). Table 2.2

includes a brief description and the objectives associated with each KADS Object model component.

Since the problem-solving templates and process descriptions can be nested to any desirable depth, KADS

Object practitioners, and OO modelers in general, are often interested in access to guidelines (based on predefined

criteria) that can be used to determine the optimal modeling depth. However, it remains a subjective evaluation:

one should model to the level required to obtain understanding, and to the level required by the organization's

needs. Modeling for modeling's sake should be avoided.

As mentioned previously, the concept description component includes a description of the pertinent concepts

required for each template pattern, the attributes of the concepts (when appropriate), and the relationship that

binds groups of concepts into hierarchies. Specific techniques are available to the knowledge analyst for identifying

and classifying concepts (discussed in the chapter on “Knowledge elicitation techniques for cognitive models”).

Also as mentioned previously, the concepts are placed into hierarchies based on a particular relationship in

which the concepts will participate within a specific problem-solving template. They represent a kind of building

block that will serve as the source for building static object diagrams.

Table 2.3 shows examples of concept hierarchies, indicating the relationship described in each hierarchy. The

notation used is a form of indentation. There are five major types of relationships used in KADS Object, as shown in

the diagram: "part-of", "is-a", "caused-by" (i.e. cause/effect), "attribute", and "states_of". If desired, the number of

possible relationships can be expanded, depending on the complexity of a process and its operations. Other

relationships exist that are variations on the major five (e.g. "place-area" as a variant on "part-of"), or that reflect

other associations (e.g. "followed-by"). Whether a particular concept participates for example, in a "part-of"

hierarchy, is dependent on whether the operation/collaboration in which it is involved needs to view the concept in

a "part-of" context.

Table 2.3: Examples of concept hierarchies.

Book (part of) title

table of contents

chapters

bibliography

Library furnishings (is a) bookshelf

file cabinet

chair

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 30 A Global Text

http://creativecommons.org/licenses/by/3.0/

2. Introduction to KADS Object

desk

Book (attribute) title

author

publisher

date of publication

Library furnishings (attribute) ID

type

color

purpose

Book (states of) ordered

in stock

purchase

Book (is a) fiction

non-fiction

Damaged books (caused by) bindery

customer

librarian

As a general rule, concepts should not be modeled more than four levels (indentations) deep within a hierarchy

Since these hierarchies are mapped to an object structure, excessively deep hierarchies can result in excessively

deep and overly complex object structures.

During knowledge elicitation and the construction of the concept description, redundant concepts are not only

allowed, their identification is deemed an important activity. The more frequently a concept is used in diverse

hierarchies and problem-solving templates, the more probable its core importance. Each time a concept is used in a

hierarchy, and within a problem-solving template, it represents a different semantic context for that concept. For

instance, the concept "water" has one implication when it is placed in a hierarchy called "Liquids" and quite another

when it is placed in a hierarchy called "My favorite things".

The deliverable for the concept description component is a lexicon of the concepts: their hierarchical groupings,

definitions and descriptions of the concepts, and an identification of the templates and roles within the templates in

which the concepts are found (discussed later in this chapter). The extent to which this description is complete will

depend on the extent to which the problem-solving template model and its associated pattern description are

complete. In the typical iterative/incremental development environment, the first iteration will result in an

incomplete KADS model.

31

This book is licensed under a Creative Commons Attribution 3.0 License

The first activity that occurs when beginning to build the Pattern Description Component is an identification of

the applicable processes (e.g. the sales/marketing processes) and the probable level of abstraction that will be

needed. The second activity is to identify or construct (this topic is covered later in the book) the patterns which

underlie each process. All KADS model components undergo multiple iterations and refinements in the course of

knowledge elicitation/acquisition and modeling, and the pattern description is no exception. Thus, it is important

to communicate to the project sponsorship that processes and their associated patterns identified early in the

project are preliminary assessments, and subject to revision as more is discovered about the project. Our experience

modeling at the enterprise level has shown that we might, for example, initially identify six metaprocesses, and later

revise that number upward or downward as the modeling iterations progress. Processes can be metaprocesses

(highest level of abstraction for a given project), or processes (next level of abstraction from meta), or subprocesses

(next level of abstraction from process), or sub-sub-processes, and so forth. Processes at the highest level have

several patterns embedded. Eventually (usually at the second or third level), one process equals one pattern.

Patterns are made up of individual operations; each operation is a potential subpattern or set of subsubpatterns. If

an operation within a pattern is to be modeled using a problem-solving template and a pattern description, then the

operation, by default, becomes a nested pattern. If the operation is merely described as part of a pattern, it remains

an operation. It is possible, if desired, to decompose operations to any level of detail. Detailed operations, in our

experience, are often equivalent to design patterns (ala Gamma).

Figure 2.2 illustrates a simple example of the spectrum of macro to micro processes.

The following list is representative of typical candidate metaprocesses from a telecommunications company.

Each of these metaprocesses will have one or more problem-solving templates associated with it, where the

problem-solving templates represent the reasoning pattern(s) that underlie each process.

• customer operations process

• order fulfillment and provisioning process

• customer fault and repair process

• billing and payment collection process

• sales process

• product creation process

• engineer network process

• procurement process

• market strategy process

The templates reflecting these meta-processes were decomposed down three levels of abstraction for each

process, which was determined to be the appropriate level of detail required by the client organization. This meant,

for instance, the template for process number one (customer operations), when decomposed, resulted in four

subpatterns/subtemplates, and each of these four subpatterns resulted in three sub-sub-patterns. As mentioned

previously, the candidates for decomposition/nesting are the operations found in each template pattern. The

desired level of granularity for the problem-solving templates is directly proportional to the requirements of the

stated goal.

The cognitive steps that an organization, expert or system uses to accomplish some result are not always

available to the conscious mind, and can, in fact, be "compiled". A good example of compiled knowledge is your

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 32 A Global Text

http://creativecommons.org/licenses/by/3.0/

2. Introduction to KADS Object

response when I ask you to describe how you tie your shoelaces. Although you have been tying your shoelaces for

years, you will undoubtedly experience difficulties articulating the process. Thus obtaining the information needed

to complete a problem-solving template pattern can require the use of knowledge-acquisition techniques designed

to elicit compiled knowledge. (These techniques are covered in the chapter on “Knowledge elicitation techniques for

cognitive models”).

Figure 2.2: Meta-process, process, and operation.

Pattern description deliverable

Once the metapatterns have been identified/constructed, a description is begun for each pattern. The pattern

description itself is a primary deliverable and includes the following:

• the goal/objective(s) of the pattern, the problem(s) it is designed to address;

• the input (in terms of concepts);

• the output (in terms of concepts, new and existing, their attributes and state changes);

• a concise, textual description of all operations (cognitive steps) that are needed to attain the

goal/objective(s) of the pattern. Operations can be viewed as collaborative behavior that utilize n-number

of concepts;

• an identification of any subpatterns that will need modeling; and

• any other pertinent information relating to the process (optional).

Usually, before the problem-solving templates associated with a process can be identified from the library of

templates (or constructed), the pattern description must be at least partially completed. The pattern description

(especially in terms of the operations and desired output) can be used to identify the appropriate template(s).

However, as soon as there is a candidate problem-solving template, it can be used to help guide the development of

the pattern description. The template can be used to elicit information about the pattern.

In one client engagement, a process was described in part and the template "heuristic diagnosis" was identified

as the underlying problem-solving template pattern. However, according to the expert who was describing the

process, his description did not include an operation that was expected by the template. The knowledge analysts

believed that the operation in question was "compiled", resulting in the expert not recognizing its existence.

Through the use of a specialized knowledge-elicitation technique, the operation was discovered and acknowledged

33

This book is licensed under a Creative Commons Attribution 3.0 License

by the expert. It should be noted, however, that the templates are to be used as templates, not rigid structures into

which processes are shoe-horned. As will be discussed later in this chapter, the templates must be expanded and

modified to reflect the processes of interest.

The description of the operations in the pattern description can be relatively informal. Because of our

requirement for flexibility in representation, a single representation language is viewed as too limiting. Therefore

KADS Object avoids standardizing on a representation to describe the operations. Operations may be sequential,

parallel, procedural, pattern driven, dependency driven. To a large extent, any description that accurately reflects

cognitive steps, that makes sense to colleagues and users, and conveys knowledge of the pattern being modeled, is

acceptable. The common goal of any process modeling approach ultimately is to comprehend the workings of the

process under consideration.

The lack of a standard representation language for the pattern descriptions has been a criticism leveled against

KADS in general. We hold what appears to be a minority viewpoint: that flexibility of notation for cognitive

modeling is necessary, due to the variability of human cognition. Understanding that a price is paid for this

flexibility, in our experience the benefits outweigh the disadvantages. On the other hand, there is no practical

reason why a formal representation language could not be adopted (e.g. set-theoretic, fuzzy sets...), and certainly

the KADS community in Europe has begun to address this issue (e.g. the CommonKADS workbench).

The mapping to an object notation occurs primarily based on the problem-solving templates (PST). The pattern

descriptions eventually are saved as design artifacts, serving as the explanatory source of information and detailed

knowledge represented in the PST. The PST model provides a more formalized language (the language of roles,

operations and reasoning patterns) and can thus be verified and validated to a greater extent.

The deliverable for this component is a set of pattern descriptions, one for each process (meta and nested),

completed to a level of detail that meets the need of the project or the time-boxed iterative/incremental effort.

The "Problem-Solving Template" (PST) component is the heart of KADS Object and represents one of its most

definitive features. The PSTs are cognitive models in the tradition of "domains," "frameworks" and "cognitive

maps" discussed in the “Introduction to cognitive patterns”. They provide an organizing structure and context for

each business or system process. Perhaps the greatest value in the PSTs with respect to modeling is their ability to

predict problem-solving behaviors. This is enabled by the results of the KADS research, which delivered the 21 PSTs

as a library of different problem-solving patterns.

PSTs are based on the premise that most basic human problem-solving strategies can be distilled to a set of

generic models. For example, the diagnostic problem-solving template can be applied to diagnosing an infectious

disease, diagnosing a problem afflicting your car transmission, or finding a bug in software, for each follows the

same general problem-solving diagnostic pattern. The PSTs have been tested extensively in practice, and are

generally very consistent in their mapping to problem solving across diverse domains.

Since the idea of problem-solving templates is generally a new idea for most people, it is important to find

analogies that can help clarify the meaning. Table 2.4 shows an analogy between linguistics/language and the KADS

models.

It is grammar (PST) that provides the structure to guide the usage of words (concept description) within

sentences (pattern description), and the use of sentences within a larger context of dialog management. Dialog

management (strategic description) addresses our expectations about appropriate responses to our words and

sentences, and governs the proper sequencing of events. For instance, if two individuals engage in conversation and

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 34 A Global Text

http://creativecommons.org/licenses/by/3.0/

2. Introduction to KADS Object

one asks the other "How are you?" the strategic model would suggest waiting for an appropriate response such as

"I'm fine, thanks" before moving on to other topics.

It should be noted that the PSTs tend to map more closely to a process when applied to processes at a finer grain

of detail. The KADS modeling techniques can be applied effectively at any desired level of abstraction; however,

when modeling metaprocesses, the generic template models tend not to apply. Processes modeled at high levels of

abstraction are made up of combinations of templates, as shown by the variety of output of a metaprocess. One of

the outputs may be a "diagnosis", which would indicate that the "diagnostic" template is embedded within the

metaprocess. Another output may be a "prediction," which implies the "prediction" template. As one "drills down"

the processes, the library of problem-solving templates generally apply more directly.

The PSTs emphasize the "what" rather than the "how" and do not, as a general rule, show iteration in the same

sense that a traditional process or data-flow diagram would show iteration. Iteration is usually implied in the

template, and made explicit in the process description.

Table 2.4: Analogy with language.

KADS object Analogous to Language

Concept description = Dictionary

Pattern description = Sentences

PST/pattern model = Grammar

Strategic description = Dialog management

PST diagrams

The PST is a very simple model, and consists of only two symbols—a rectangle (the "role") and an oval (the

"operation"). Each role can be considered a named set of concepts that will collaborate to perform some action and

achieve some result (output). The operation (type of collaboration) will act on these concepts to achieve some

result. Arrows are used to show the general flow of reasoning. There are a limited, defined number of roles that

concepts can play within a given template and a limited, defined number of operations/collaborations that can

occur in that same template. The operations/collaborations can be loosely defined as manipulations on sets of

concepts. Operations reflect the variety of ways humans utilize and think about concepts.

Appendix B presents narrative definitions for selected roles and operations. The definitions for the operations

are very fine grained and not all projects require such subtle differentiations (e.g. the operation "extract" is very

similar to the operation "select"). See Tansley and Hayball (1993) for another approach to defining operations.

Unless the modeling effort requires detailed and exact specifications for the operations, many of these operations

can be used interchangeably. Depending on the needs of the analyst, the level of abstraction theoretically can be

lowered to where each operation affects only one concept (very detailed and exact). However, since the problem-

solving templates and pattern descriptions are generally used as a source for the information needed to build

object models, it generally does not make much sense to model to a fine-grained level. Again it is the

analyst/designer who makes the decision as to what level of abstraction will be the most helpful for a particular

project.

35

This book is licensed under a Creative Commons Attribution 3.0 License

Figure 2.3 shows a simple, nonexpanded example of a PST, which is the generic model for Systematic Diagnosis.

For each "role" there will be a set of concepts that belong in that role. One of the tasks of the knowledge analyst is to

identify which concepts belong in each role, and then place these concepts into hierarchical groupings based on the

use of the concepts by the "operations". At a metaprocess level, the roles consist of the type of information required

rather than detailed list of concepts. Until the patterns have been validated and nested, capturing detailed concepts

is premature. An example of the type of information that is useful at a metaprocess level is the item "customer-

profile information". This would contrast with the more detailed delineation of a list of customer-profile concepts.

Other examples of types of information include "infectious-disease hypotheses", "equipment scheduling

information", and "test suite repository".

Figure 2.3: Systematic diagnosis.

Figure 2.4 illustrates an example of the type of information that might apply to the "Systematic Diagnosis"

template. (Again, actual concepts would be identified after the appropriate types of information had been identified

and validated.) The area of interest for this example is medical diagnosis. The basic reasoning flow is as follows: A

complaint ("my foot hurts") is received by the physician (or system). Based on the nature of the complaint, a

subsystem model (e.g. orthopedics) is selected from the system model (e.g. knowledge of the anatomy and

physiology of the human body, presenting symptoms, range of hypotheses, appropriate tests, normative values,

etc). Incorporated into the subsystem model are the hypotheses and tote that are specific to orthopedics. Tests are

run and data values are obtained, which are then compared to the test norms to arrive at a determination of the

differences. (Note that the template does not address the actual running of the tests; if desired, that activity could

be modeled using a different template.) Based on the differences and the hypotheses that are supported by these

findings, a conclusion (diagnosis) is reached.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 36 A Global Text

http://creativecommons.org/licenses/by/3.0/

2. Introduction to KADS Object

This template represents one high-level model of how diagnosticians reason through to their conclusions. An

example of expansion/modification to this PST might include identifying additional roles that would take the place

of the gigantic system model, such as the addition of a role entitled "set of hypotheses" and a role entitled "set of

tests". An example of a nested drill down might include the identification and modeling of the

template(s)/pattern(s) that are embedded in the specify/ heuristic match operation.

Figure 2.4: Systematic diagnosis: ankle injury example.

Concept behavior can be seen as collaborative, where the emphasis is placed on identifying the total set of

concepts contributing to a desired outcome. In addition, an assessment of each concept's contribution during a

collaborative effort can be made (e.g. the contribution of the concept "joint mobility status" in the specify/heuristic

match operation). Conversely, the specific behavior of a specific concept can be identified. It is fashionable to

assume that only the latter example is worthwhile and purist OO. As mentioned previously, it is our belief that

knowing how objects collaborate within a business (or system) process and their associated patterns, is essential to

understanding the larger context of object behavior.

Figure 2.5 shows the same generic PST, "Systematic Diagnosis", applied to troubleshooting an electrical problem

for a car.

37

This book is licensed under a Creative Commons Attribution 3.0 License

Figure 2.5: Systematic diagnosis: car problem example.

When first exposed to the notion of PSTs, there is often a tendency to read them as traditional process flows,

flow charts, work-flow diagrams or data flows. However, PSTs do not fall neatly into any of these categories. The

difference lies in the type of information being modeled within one template, which can include data flow,

decisions, etc. Cognitive-modeling approaches tend to explore questions such as "What do you do next?"; "What do

you do when you get confused?"; "Then what happens?"; "How do you make a decision?" rather than "What kind of

data do you need, use, store?" or "Where do you send the results?" The answers to the last set of questions are

important, but they are usually discovered as components of the answers to the former questions. (The answer to,

"Then what happens?" may include a reference to the sending of a confirmation to another department.) Again, the

emphasis in cognitive modeling is placed on the reasoning and problem solving that occurs in a process, not the

document flow.

Each template from the library of templates exhibits not only a different configuration pattern of roles and

operations, but the names given the roles and operations also vary. The names often reflect the area within which

that particular template was first described (e.g. nuclear industry). Therefore, the names of the roles and operations

must be changed to better reflect the project actually being modeled. Each library template's roles and operations

have been defined and, if desired, the definitions can be represented using a formal language (e.g. set-theoretic). A

glossary can be kept, if desired, that indicates the relationship between the names given the roles and operations for

a project-specific template with the original names in the library templates. For instance, the generic KADS role

"problem description" may be changed to "insurance application" for an insurance company. The generic KADS

operation "compare" may be changed to "determine differences in residence address" for a mail list application.

PSTs are the flip side of the coin of the pattern descriptions. Pattern descriptions describe in some narrative

detail what is happening in terms of the operations that are used in the templates. One should be able to look at the

problem-solving template diagrams and find a more detailed explanation of the diagram in the pattern description.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 38 A Global Text

http://creativecommons.org/licenses/by/3.0/

2. Introduction to KADS Object

For instance, the operation "compare" found in a template can be described in the pattern description using a

textual description, using set theory notation, using pseudo-code or some other notation. We have found that "use

cases" (Jacobson, 1993) can be developed quickly and effectively when the templates are utilized to provide context

and leveling for the use cases. The application of use cases is shown in the case study described in the “Case study: a

retail banking example”.

Library of Problem Solving Templates

The library of 21 PSTs currently exists in the public domain, and represents the kernel of the KADS Object

library. The templates are differentiated by the kind of solution provided by each template. Table 2.5 lists the twelve

most common templates and the type of solution provided by each. Examples of these and other templates are

included in Appendix A.

All templates in the KADS Object library are categorized as analysis-type templates or synthesis-type templates.

Analysis-type templates are concerned with the manipulation of existing components (a closed-world scenario)

within a particular template. Synthesis-type templates are concerned with the introduction of new elements (an

open-world scenario) into a particular template. For instance, the "Systematic Diagnostic" problem-solving

template is an analysis-type template. All of the possible diagnoses for broken bones are known. The "design"

problem-solving template is a synthesis-type template. When designing a new chip, no knowledge exists of all of the

possible solutions. Needless to say, synthesis-type templates tend to carry greater risk and tend to have increased

complexity of implementation when contrasted with analysis-type templates.

The PSTs are regarded as minimalist blueprints, which undergo modification and refinement through multiple

iterations of the model, incorporating feedback from subject-matter experts (SMEs) or other stakeholders. The

minimalist blueprint metaphor works as follows. Imagine that you have decided to build a house. You purchase a

software package, which includes generic blueprints, and which allows you to first select the general type of

structure that applies (e.g. house, factory, store). You select "house". The program then creates a generic blueprint

of a predesigned house based on your selection. Upon reviewing the generic blueprint, you determine that your

unique requirements require modifications to the design ("master bedroom too small", "need a storage room", and

so forth). The blueprint is then modified to adjust to your family's specific needs. The key is that you did not

initially select "factory" and then try to modify that generic design to create a house. You chose a preexisting

"template" that closely matched your requirements, and from that developed an acceptable model with a minimum

amount of effort. Modifying a PST generally means expanding it. Because the library templates represent the

minimum "core" reasoning pattern, the PSTs developed for real projects tend to be twice the size (in terms of

additional roles and operations) of the library templates. In addition, occasionally a different operation may be

substituted for a library template operation.

Table 2.5: Library of PSTs.

Problem solving template Solution type sought

Analysis type Concerned with existing components

Classification Placement into a category (solution)

Systemic diagnosis Cause (conclusion)

39

This book is licensed under a Creative Commons Attribution 3.0 License

Heuristic diagnosis Cause (conclusion)

Assessment of suitability Decision

Monitoring Difference

Prediction Expected values

Repair Remedy

Synthesis type Concerned with new components

Planning Sequence of actions

Design New product/service/structure

Prediction Expected behavior

Configurations Assembly of components

Scheduling Constraint satisfaction (time based)

In our experience, the library of 21 PSTs works much the same way with human problem solving, directly

applying to greater than 80 per cent of the business and system processes we have modeled, assuming that we are

modeling at a relatively detailed level. It is generally the case that individual templates tend to blur at higher levels

of abstraction. When the level of abstraction is high (for instance, at the metaprocess level), templates reflecting the

processes need to be built from scratch, recognizing that several library templates are likely to be "nested" within a

single high-level abstraction. Rules for constructing problem-solving templates will be shown later in the chapter.

In Figure 2.6, a fragment of a medium-level process called "Review Production Data" from a testing application

is shown as an example indicating the presence of a nested template. A nested PST library template ("Suitability

Assessment," indicated by the arrow) underlies the operation called "5.2 Review". "Suitability Assessment" is a

template where the objective is to make a decision (often binary), based on an assessment of a difference. In this

example, the "Suitability Assessment" template presented below is partial (see Appendix A for complete diagram).

In some cases, a library PST may require so much modification that it loses any resemblance to its original,

generic form. Typically, this indicates that the wrong PST has been selected, or it can indicate the need for a unique

PST that does not yet exist in the KADS Object library. Construction of new PSTs specific to an organization can

facilitate greater reusability. For instance, a new PST called "Maintenance" might be created by an organization,

serving as a kind of generic view of how maintenance is handled for all departments. Table 2.6 shows the steps

needed to build a PST from scratch. In order to construct a PST, the analyst/designer needs to begin developing a

"pattern description". The first attempt at developing a pattern description with a SME(s) (subject-matter expert)

should last no longer than an hour. This limitation keeps the analyst/designer and SME from going too deeply too

fast.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 40 A Global Text

http://creativecommons.org/licenses/by/3.0/

2. Introduction to KADS Object

Figure 2.6: Nested template example.

The deliverable of this component consists of the set of problem-solving template (PST) pattern models and

nested templates pattern for an area of interest, developed at a level sufficiently deep to satisfy the needs of the

project.

The Strategic Description Component provides a layer of overall management of the business logic that governs,

for example, the sequencing of patterns. Not every project benefits from having a strategic description. Fine-

grained and detailed processes that do not display many interdependencies, and can run from start to finish with

readily available resources, may not require development of a strategic description. We typically include it when

circumstances indicate a clear business value. The contents of the description itself vary from project to project.

Table 2.6: Steps for building a PST.

1. Identify high level meta processes of interest (e.g. the customer care meta process).

2. Determine purpose of process and desired output/result/conclusion for the process of interest. Using

the Pattern Description format, begin filling out the major sections, starting with the output section.

This is one of the most important steps; a good understanding of the output desired will prove of great

assistance in identifying the patterns that underlie the process.

3. Determine the input requirements needed to obtain the desired output. Under what circumstances does

the process begin? Begin with type of information required (e.g. "personnel records"), rather than

specific concepts (e.g. "name").

4. Ask SMEs questions that refer to the order of, and explanations of, the operations: For instance, "What

do you do first?", "Then what happens?", "How do you usually solve that problem?", "Why do you do

[some activity]?". Elicit the general case and try to avoid detail. It should be clearly understood by

participants and stakeholders whether the Pattern Description is being completed for an existing

process, or for a future-as-we-would-like-it-to-be process. Operations can be compiled (i.e. hidden) in

the minds of the SMEs. Specific techniques (described in the chapter on “Knowledge elicitation

41

This book is licensed under a Creative Commons Attribution 3.0 License

techniques for cognitive models”) may need to be used to elicit the compiled operations. The existence of

compiled operations is often discovered when there is no evidence of an operation that should exist,

given the desired output.

5. Diagram a PST/pattern. based on your initial Pattern Description. Rectangles represent type of

information (roles), and ovals represent the operations. Use nouns to refer to the roles, and verbs to

refer to the operations. Modify until the SMEs are satisfied that the PST/pattern represents the process

at a high level.

6. Determine whether any of the library PSTs/patterns are evident. Generally one or two outputs from an

operation indicates the level at which the library templates begin to play a role. Identify any candidate

library PSTs/patterns and validate with SMEs.

7. Modify the constructed PSTs/patterns and pattern descriptions to desired level of detail or until

library PSTs/patterns occur. Identify the concepts that constitute the "type of information" previously

gathered, and complete the concept description, pattern description, strategic description and finalize

the PSTs/patterns.

8. Construct use cases for selected PSTs/patterns or operations within PSTs/patterns. (See the chapter “A

retail bank example” for information regarding the relationship of use cases to patterns.)

In some instances the strategic description has consisted of a template model that is a variant of the generic

PST/pattern for "Monitoring". It can be used to evaluate expected versus real behavior of patterns. (Refer to

Appendix A for a model of the "Monitoring" PST.) While it is true that the "Monitoring" template could be

appended to each individual process, it may not be the most elegant solution for overall monitoring of all processes.

By developing a global "Monitoring" PST at the strategic-description level, reusability is leveraged because the

strategic description (like the concept description) cuts across all patterns and PSTs. In fact, the strategic

description can utilize any format or approach that makes sense for a given project. For one engagement, the

strategic description consisted of a diagram showing all the linkages between the patterns. In another project, it

consisted of all the global business rules (business rules that impacted all processes).

In other situations, it has been used to differentiate sustaining processes from core processes, where sustaining

templates/patterns are placed in the strategic description. A core process is a process that represents the work the

corporation does in support of its mission. For example, a bank would have a core process regarding customer

services. A sustaining process is a process that supports the core processes. An example of a sustaining process

would be human resources. It, in itself, consists of a number of processes that may require modeling in the normal

way, but through its services, it also impacts core processes such as customer service by ensuring that sufficient

number of employees are hired and retained. In some instances, this differentiation varies, depending on how an

organization perceives its processes.

Other uses of the strategic description include:

• identifying and diagramming the linkages between the patterns where a pattern sends output to another

pattern, receives it from another pattern, shares concepts with another pattern and so forth;

• identifying specific strategies regarding the circumstances under which the order of the patterns is

changed;

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 42 A Global Text

http://creativecommons.org/licenses/by/3.0/

2. Introduction to KADS Object

• controlling the timing of patterns, especially in a real-time environment; and controlling exceptions/error

handling that affect more than one pattern.

The strategic description deliverable is optional and the format is highly flexible, depending on the needs of a

given project.

Selecting a Problem-Solving Template

The primary selection criteria for choosing a PST/Pattern is based on the kind of solution sought, which is

precisely the type of problem solving reflected in the "Suitability Assessment" PST. When the analyst is trying to

ascertain which problem-solving template applies for a given process, the "Suitability Assessment" PST

(consciously or unconsciously) is being used to do so (see Appendix A). When deciding which problem-solving

template/pattern applies, the analyst must ask himself the following kinds of questions: Does a given process seek

to make a decision ("Suitability Assessment" PST/Pattern), place something in a category ("Classification"

PST/Pattern), diagnose a problem ("Diagnosis" PST/Pattern), configure a structure ("Configuration" PST/Pattern),

or design a product ("Design" PST/Pattern)? If it is not clear which template underlies a process, developing (to a

limited extent) the process pattern description, will indicate the type of solution sought (i.e. the output). This will

help identify the underlying pattern. As mentioned previously, if there are several different kinds of

solutions/results that are outcomes of a process, the chances are that you are working with a meta- or high-level

process that has several library templates embedded within it.

As soon as a candidate PST/Pattern has been selected, the analyst begins working with the SME or user,

employing the PST/Pattern as a knowledge-acquisition aid. The logic of the template is explored with the SME to

ascertain the appropriateness of that particular template, and to determine the extent to which it requires

modifying. Selecting the wrong template is not an earth-shattering event. For example, a novice modeler might

initially select the generic "Suitability Assessment" PST/Pattern as a starting point. After extensive modification the

modeler is satisfied that the PST/Pattern is accurate, but it now more closely resembles a "Prediction" PST!

Obviously, starting with a prediction PST would have been the correct choice, and less work in the long run. As a

practitioner gains experience using the templates, mistakes happen less often. Occasionally a practitioner may have

insufficient information to establish the precise choice of PSTs/Patterns and may for a short while consider two or

three PSTs/Patterns as candidates. With increasing information, one candidate PST is selected. It has been our

experience, and that of our clients, that experienced modelers identify/develop/use similar or identical templates

when modeling the same process.

Linking Problem-Solving Templates

PSTs/Patterns define processes at various levels of abstraction (i.e. meta-process, process, subprocess), where

each process is modeled as a separate entity. However, in nearly all cases, PSTs are linked to each other across

functional boundaries. For example, customer-service processes and their PSTs/Patterns, are generally linked to

billing processes and technical-support processes. A customer complaint relating to a technical problem might be

an input to both customer service and technical support. A customer complaint relating to a billing problem might

be related to both customer service and technical support. Concepts and operations within a PST/Pattern that are

related to another PST/Pattern are indicated by dashed lines as in Figure 2.7. Figure 2.7 shows a partial pattern

(5.0) with relationships with a role in pattern 8 and an operation (7.4) in pattern 7. When relationships are many

and/or complex, a table can be built to describe the relationships. This avoids "spaghetti lines" on drawings.

43

This book is licensed under a Creative Commons Attribution 3.0 License

Conventions of modeling activity

A list of the diagrammatic conventions (Tansley & Hayball, 1993) that should be followed when constructing or

modifying the templates is shown in Table 2.7. We have added a few guidelines to Tansley's original list based on

our experience. The guidelines are kept brief because the emphasis in KADS Object is on flexibility rather than on

strict formalized methods.

Summary of modeling activity

The major activities associated with developing the KADS Object models are shown in Table 2.8. Although the

list is presented in a sequential format, many of the activities can, and should, be done in parallel.

Figure 2.7: Linkages between PSTs.

Table 2.7: Diagrammatic conventions.

• Roles are represented as rectangles with their name inside (usually a noun).

• Operations/collaborations are ovals with their name inside (usually a verb).

• Possible directions of operations/collaborations are marked by one-way arrows.

• An operation/collaboration generally represents a transformation of one or more roles into one or more

new roles, in terms of the concepts "residing" in the roles.

• No role may be directly connected to another role, and no operation/collaboration can be directly

connected to another operation/collaboration.

• Ovals with emboldened lines or which are shadowed indicate the presence of nested templates/patterns.

• PSTs/patterns do not specify how nor when to perform the operations/collaborations.

• Each PST/pattern should fit on a 8.5 x 11 sheet of paper for the sake of readability and ease of

understanding. Diagrams too large to fit a single sheet should be abstracted up a level, and sub-patterns

developed on separate sheets.

• Almost any drawing tool can be used to manufacture the diagrams. We start off with hand drawn

diagrams and then use "Topdown" to automate and store the diagrams. The European community has

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 44 A Global Text

http://creativecommons.org/licenses/by/3.0/

2. Introduction to KADS Object

developed several tool kits which support KADS.

Table 2.8: Major activities for building KADS models.

• Identify and describe the processes of interest (business or system) in terms of output/input/operations,

at the appropriate level of abstraction (meta process, process). Follow the Pattern Description, format.

This should be the first task of the analyst/designer.

• Identify the type of information required, followed by a more detailed description of the concepts

required. Structure the concepts hierarchically, according to relationship. Follow the Concept Description

format.

• Identify or construct PSTs/patterns based on the findings from the Pattern Description, modifying as

appropriate. Follow the PST/Pattern diagram format.

• Determine the need for a strategic description and construct if necessary. Although there is no specific

Strategic Description format, generally examine the project to ascertain if a Monitoring (or other)

PST/pattern would be an appropriate choice for a format.

• Describe and/or diagram linkages between patterns, if desired, and decide whether the linkage model

should "reside" in the Strategic Description. This is usually the last task of the analyst/designer as it

requires information from the activities above.

References

de Hoog, R., R. Martil, B. Wielinga, R. Taylor, C. Bright & W. van de Velde (1992). The Common KADS

Model Set. KADS-II/WP 1-11/RR/UvA/018/4.0.

Gardner, K. (1995). KADS Object Class Syllabus. KPMG Peat Marwick LLP.

Jacobson, Ivar. Object Oriented Software Engineering: A Use Case Approach. Reading, MA: Addison

Wesley, ACM Press.

Martin, James and J. Odell (1995). Object Oriented Methods: a foundation. Englewood Cliffs, NJ: Prentice-

Hall.

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy & W. Lorensen (1991). Object Oriented Modeling and

Design. Englewood Cliffs, NJ: Prentice-Hall.

Tansley, D. & C. Hayball (1993). Knowledge Based Systems Analysis and Design: A KADS Developer's

Handbook. Englewood Cliffs, NJ: Prentice-Hall.

Wielinga, B., W. van de Velde, G. Schreiber & H. Akkermans (1992). The CommonKADS Framework for

Knowledge Modelling. KADS-II/Tl.l/PP/UvA/35/1.0.

Key terms

Concept A concept is an idea or notion that we
apply to the things, ideas or objects in our
awareness. (Concepts will eventually be candidate
object types/classes.) An object is anything to
which a concept applies. It is an instance of a
concept. For instance, the term "customer" is a
concept. When a specific example exists (such as
"customer Sam Smith"), an object is created that is
an example of the concept "customer".

Hierarchy A hierarchy is a grouping of concepts,
bound together by a unifying relationship (i.e.
"part-of", "is-a", attribute", "cause/effect" etc.)
Pattern A logical end-to-end sequence of steps
(serial or parallel) that solve a problem, reach a
conclusion, or obtain a result; each pattern is
reflected by a problem-solving template(s).
Patterns can be nested, resulting in subpatterns
and sub-subpatterns etc. Examples of business or

45

This book is licensed under a Creative Commons Attribution 3.0 License

system processes that are made up of various
patterns and sub-patterns include: the accounts-
payable process, the customer care process,
developing a strategic plan, designing a database,
designing an error report, invoicing a customer,
and the database commit process. A pattern
description is completed for each pattern and
subpattern, and includes the goals and objectives
of the pattern, the input into the pattern, the
output of the pattern, and the
operations/collaborations that result in the output.
Input The concepts required to perform the
operations of the pattern.
Output The concepts, new and existing (with
changed attributes and state changes) that result
from the activities of the operations in a pattern.

Operation (1) A specific behavior (a cognitive
step) within a pat-tern, (i.e. "match P.O. to invoice"
is an example of an operation). Operations use
concepts, where concepts are employed
collaboratively to complete some behavior.
Problem-Solving Template/Pattern A
diagram illustrating the reasoning pattern that

underlies each process and subprocess. The
diagram is made up of two symbols—rectangles
and ovals—with arrows showing the flow of
reasoning. The rectangles refer to "roles" and the
ovals to "operations/collaborations".
Operation (2) A collaborative or specific behavior
(depending on whether the templates\patterns are
reflecting meta/high-level processes or detailed
sub-processes) within a problem-solving template,
noted by the symbol of an oval.

Role A named set of concepts that serves a specific
purpose, or role, (either as an input or output) in a
given operation, noted by the symbol of a
rectangle.

Collaboration Two or more roles serving as input
to a single operation in order to produce a desired
output.
Strategy The application of meta-level
management/control/planning functions that
affect the ordering and dependencies of processes
in the process descriptions and problem-solving
templates.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 46 A Global Text

http://creativecommons.org/licenses/by/3.0/

This book is licensed under a Creative Commons Attribution 3.0 License

Part 2: KADS object model development
Summary

Part 2 consists of:

“Knowledge-elicitation techniques for modeling cognitive” templates/patterns

“Mapping cognitive models to objects”

“Other uses of KADS Object”

These chapters include an introduction to specific techniques for development of KADS object models, which go

beyond simple interviewing techniques and explore proven methods for eliciting and validating deeply embedded

knowledge. Detailed examples are provided for mapping components of KADS object cognitive models over to

object types, relationships, attributes and behaviors. Finally, diverse applications of cognitive modeling are

discussed relating to Business Process Reengineering (BPR), knowledge management, development of user

requirements, skills inventories, training development and more.

Objectives

The objectives of part two are:

• to delve deeper into the actual knowledge-elicitation and model-construction techniques of KADS Object

• to demonstrate, by use of specific examples, the mapping of KADS model components to OO design elements

such as object relationships, collaborations, behaviors and business logic

• to explore the application of cognitive patterns to areas outside traditional OO analysis and design

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 47 A Global Text

http://creativecommons.org/licenses/by/3.0/

This book is licensed under a Creative Commons Attribution 3.0 License

3. Knowledge elicitation
techniques for cognitive
models

Introduction

In order to construct the Knowledge-Acquisition and Design Structures (KADS) model, a variety of elicitation

techniques are necessary. "Elicitation technique" is the term given to any approach where the goal is to acquire

information/knowledge from a person. There are a variety of elicitation techniques, ranging from simply asking

questions to sophisticated software designed to "extract" the expertise from the expert. The techniques discussed in

this chapter represent a selection from a larger set of cognitive techniques that are designed to elicit differing

perspectives concerning information or knowledge. The results then are used to model some view or interpretation

of reality. These techniques can potentially provide significant benefit to object orientation (OO) practitioners,

particularly those interested in modeling cognitive patterns and/or gaining access to compiled knowledge. Just as

electricians or carpenters use their expert judgment when deciding which tool to employ for a given task, OO

practitioners can select the techniques they feel are most suitable for a project's goals and objectives. The more

techniques available, the greater the range of elicitation problems that can be solved.

These techniques are integral to the field of knowledge analysis. The artificial intelligence community pioneered

the use of many of these approaches to elicit expertise for the purpose of designing and implementing knowledge-

based systems. The term originally given this process of acquiring and modeling expertise was "knowledge

engineering", but the word "engineering" is rather misleading. It implies operations on inert substances, as if

attaining information and gathering facts were a kind of extraction from a passive source, like mining for gold ore.

"Knowledge analysis" is a more generic term, which broadly suggests an emphasis on the analysis effort that is

involved. Acquisition of knowledge, information and data is more of a cooperative venture between the analyst and

the expert/user/stakeholder than an engineering creation.

The use of these knowledge analysis techniques has been expanded, in this case into the realm of OO, because of

the desire to apply cognitive patterns to the modeling and construction of robust (and suitably documented) OO

projects. Traditional techniques are not oriented toward the elicitation of cognitive material and thus cannot

achieve the depth of understanding that is required to model cognitive patterns.

For example, interviewing—essential as it is to traditional system analysis—is a notoriously inadequate way of

capturing information and user requirements, hence the importance given to prototyping for driving out user

requirements. Interviewing is employed in knowledge analysis as well, but the intent and content of the interview

differs (as will be discussed later in this chapter). In addition, interviewing is considered only one of the many

approaches available to knowledge analysts.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 48 A Global Text

http://creativecommons.org/licenses/by/3.0/

3. Knowledge elicitation techniques for cognitive models

It has been our experience that the techniques discussed below, when used to support modeling and

prototyping:

• offer a superior method for understanding complex domains;

• avoid the use of a singular technique for solving multiple problems;

• provide a range of approaches designed to elicit specific types of information/knowledge (e.g. compiled

knowledge), giving the analyst more fine-grained tools than are traditionally available.

Table 3.1 presents a few of the more important distinctions that differentiate systems analysis from knowledge

analysis.

Table 3.1: Comparison of systems analysis to knowledge analysis.

Systems analysis emphasizes: Knowledge analysis emphasizes:

user/stakeholder needs experts' expertise and user/stakeholder needs

procedural, process and factual data and information emphasis on the cognitive use of data and

information

inputs, outputs and data flows concepts and problem solving strategies

quantitative data heuristic, judgmental data

structured/industrial engineering techniques cognitive knowledge acquisition and analysis

techniques

the syntactic aspects of the domain and its processes the semantic richness of the domain

Knowledge analysis is a component of the more extensive field of knowledge management. Knowledge

management can be defined as the recognition of the importance of intellectual assets (e.g. employees' knowledge),

the desire to manage these assets properly, and the understanding that so-called knowledge work is ubiquitous in

organizations. The topic of knowledge management is not within the scope of this book; however it provides the

larger context for the subject of this book. The approach described herein fundamentally supports the wider vision

of knowledge management because of the emphasis placed on viewing organizations/processes/systems from a

problem-solving, knowledge-using perspective.

Figure 3.1 shows the desirable skill set for knowledge analysts, and as is evident, the attributes are similar to the

characteristics required of competent system analysts.

However, few system analysts are asked to be intuitive, nor is the attribute "ability to think abstractly" generally

listed as a desirable feature. However, the skill set needed by OO practitioners is almost identical to this list, and the

addition of knowledge analysis skills can only enhance and deepen an OO practitioner's competence.

49

This book is licensed under a Creative Commons Attribution 3.0 License

Knowledge acquisition bottleneck

Figure 3.1: Knowledge analyst skills.

One of the chief bottlenecks in the analysis and design of systems and processes is the knowledge acquisition

problem. The reasons for this are diverse and include:

• our current understanding of the nature of expertise and knowledge is still rather rudimentary;

• "in the box" thinking (inability to view a larger picture and/or insufficient creativity) by

users/experts/stakeholders as well as by analysts, which inhibits creative brain-storming and differing

perspectives. Certain cognitive characteristics of humans and their languages contribute to predicaments

such as chronic miscommunication between users and IT staff, individuals' inability to verbalize accurately

and coherently, individuals being unaware of the knowledge they possess (compiled knowledge), and the

tendency people have to suppress uncertainty when asked their opinion. These problems hinder analysts'

attempts to define user requirements, manage expectations and, in general, to obtain needed information;

• most analysts/designers have not been adequately trained in the variety of techniques available to them

that can improve the quality of communication and assist in the acquisition of requisite information;

• the user/expert community may feel threatened, experience the time demands as excessive, and/or believe

the effort is a waste of time, hence they become uncooperative.

Knowledge elicitation techniques can help reduce, but not solve, the problematic aspects of knowledge

acquisition. A side benefit from the use of these techniques has been the enthusiasm many users/experts

unexpectedly experience when participating in some of the cognitive knowledge acquisition techniques. From a

subject-matter expert's perspective, knowledge acquisition can be an exciting and thought-provoking exercise.

Knowledge elicitation techniques

Six techniques will be discussed in this chapter:

• interviewing

• protocol analysis

• concept sorting

• scenarios

• observation

• event recall

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 50 A Global Text

http://creativecommons.org/licenses/by/3.0/

3. Knowledge elicitation techniques for cognitive models

Each of these techniques is discussed below.

Interviewing

Interviewing is the most common and traditional method used for eliciting data and information, and it is an

important technique for knowledge analysis as well.

However, it should be remembered that the interviewing process always results in incomplete information, no

matter how frequently it is performed. Also the quality of the interview results varies widely. The quality of the

results is a function of the interviewee's ability to understand and communicate, and the interviewer's ability to

provide the appropriate context, to ask the right questions and to understand the answers. Skill at interviewing is

rare: most analysts are given limited training and expected to develop expertise from experience. Unfortunately,

learning often occurs at the expense of the user/expert/stakeholder.

From a cognitive point of view, interviewing is perceived as having two almost mutually exclusive objectives:

obtaining facts and attaining understanding. Interviewing, as it is practiced in the system-analysis community, is

oriented primarily toward obtaining facts. Unfortunately, facts are often sought before understanding is attained. In

an effort to develop systems faster and faster, the analyst seeks facts to serve as the basis for coding and

prototyping. The importance of gaining understanding before obtaining facts is a well-known precept of the

ethnographer (someone who studies living cultures), and the OO practitioner would do well to study the techniques

of the ethnographers. Ethnographers are aware that it is essential to establish a rapport with the interviewee, to

understand his/her concerns and the context in which he lives and works. Trust must be developed, for example,

before an individual will talk factually and candidly about how he prepares a certain tincture. The ability to read

body language is considered a critical factor for successful interviewing.

The premature rush to facts (and to code) often obscures issues, which, had they surfaced earlier, would have

saved developers from having to address these same issues at the more complex, detailed level. For instance, in the

rush to get a system out as soon as possible, the underlying business needs may not be examined adequately,

leading to yet another failed or compromised system.

When understanding is the goal, unstructured interviews are preferred. During this phase, very high-level and

general questions are asked so the analyst can familiarize herself with the view of the user/expert/stakeholder and

begin to appreciate the context of the project. Examples of questions asked at this phase include:

• What are the expectations regarding this project?

• What problem(s) is it going to solve?

• What is the role of this system?

• What constitutes expertise in this domain?

• What are your major concerns/issues regarding this project?

• How does the proposed project impact your current work patterns?

Once a baseline understanding is achieved focused interviews can take place, where the emphasis is on asking

open questions that revolve around topics. Examples of topics include:

• identification of major processes and patterns;

• preliminary assessment of level of abstraction required;

• high-level use cases for patterns;

• high-level specifications/constraints for a proposed system;

51

This book is licensed under a Creative Commons Attribution 3.0 License

• high-level information on existing systems (if project is to replace or modify existing systems);

• high-level information on interface requirements with other systems.

Structured interviews are used to delve more deeply into details. The term "structured" refers to the presence of

a format or organization, designed to elicit precise facts. Structured interviews do not consist of random questions

and are not meant to support "design by enumeration". Examples of the types of questions that would be asked at

this level include:

• Can you describe what exactly is going on in this "compare" operation?

• Does this template reflect the kind of problem solving you do? If not, where do we need to make changes?

• Can you identify the concepts that belong in this "problem description" role?

• What are the necessary inputs for this process?

As mentioned previously, KADS Object can fit within existing methodologies, as it is a modeling view rather

than a complete methodology (KADS in Europe is used more as a life-cycle methodology). In some instances a

methodology may call for user workshops in place of individual interviews. The same principles apply.

The advantages of interviewing are appreciable. Interviewing, when done well, can establish a rapport between

the analyst and the user/expert/stakeholder and is an essential part of information gathering. The disadvantages,

however, are significant. There is always bias and error in verbal data (i.e. report may not reflect true behavior), and

interviews always result in incomplete information.

Interview types: examples of use

Unstructured: to gain an understanding of the situation/ problem/scope

Focused: to identify metaprocesses and preliminarily identify candidate problem-solving templates (PST)

Structured: to evaluate the relevance of a specific PST for a given process; to identify the contents of a PST's

operations and roles; to complete the process descriptions.

Protocol analysis

Protocol analysis is a technique designed to elicit very detailed information regarding a particular process (e.g.

diagnosing printer problems). It is usually applied at a subprocess level, but can be used at any level of abstraction,

depending on the complexity of the process. Complex processes need to be decomposed into subprocesses because

the amount of detail provided by the protocol analysis can be overwhelming. The user/expert/stakeholder is asked

to keep in mind three questions as he completes the process:

• What are my goals for this process?

• What are my methods for this process?

• What am I seeing at any given time concerning this process?

He is then asked to complete the process, and while doing so, to think aloud. The interviewer often videotapes or

audiotapes the session for review with the user/expert/stakeholder at a later date. The interviewer is responsible for

identifying the principle utterances, or those comments judged most relevant, given the objectives of the session.

Protocol analyses are unsurpassed for obtaining detailed information on difficult, primarily linear and complex

processes. Actions taken during the process are explained and justified.

Considerable research exists showing the efficaciousness of protocol analyses (Newell & Simon, 1982). The

advantages include a lack of delay between performing the task and reporting on it; providing a detailed level of

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 52 A Global Text

http://creativecommons.org/licenses/by/3.0/

3. Knowledge elicitation techniques for cognitive models

analysis; identifying incomplete information; and it is not subject to the bias of memory. The disadvantages include

the fact that it is most applicable for linear and stepwise activities and human activities are not always linear; it is

difficult for some users/experts/stakeholders to perform, and it can be time consuming and expensive. However, its

use can avoid the thrashing that occurs among analysts/developers when there is insufficient information available

to them, and it can clarify complex processes. We have found it to be invaluable and have used it in a variety of

settings: to discover how an engineer designs an airplane part, to analyze workflow, to better understand a rating

process, and to determine how an expert re-engineers code.

A partial example of a protocol analysis is shown in the following example. This is a transcript of an expert

horticulturist describing his process of diagnosing the cause of leaves that show evidence of burning. Examples of

his "goal, method, and what am I seeing" statements are indicated.

"People generally bring me leaves, like these, as symptoms. My objective is to identify the cause of the

symptoms [GOAL]. I do this by looking at the samples that are brought to me and trying to develop a

precise description of the symptoms [METHOD]. These leaves show evidence of burning, as indicated

by brown areas [WHAT IS BEING SEEN AT ANY GIVEN TIME]. I first determine where the burning

is located.

If the leaf has a marginal burning or a killing of the tissues around the older leaves, this is evidence

of salt damage; excess salt. This can occur for a variety of reasons. Two are most common. The first

is from too much fertilizer and the second is from improper leaching of the soil. Nothing else causes

this kind of burning, so when you see it, you know for sure that it is caused by excess salt. Now this

leaf shows no evidence of marginal burning, but rather burning between the veins.

Burning of the tissues between the veins is caused by sunburn. This is very common. The first

symptom is leaves that have become colorless like this one and this is followed by a killing of the

tissues resulting in either a bleaching of the leaf or a browning of the whole leaf. Sunburn is a

response to excess sunshine, but it really is not caused by the sun so much as it is caused by the plant

being too dry. . . . Plants that don't get enough water are susceptible to sunburn. There is one other

reason why a plant might sunburn easily. Not enough iron. This is common".

Protocol analysis: examples of uses:

• to complete pattern descriptions and to identify patterns used by expert

• to obtain detailed information in order to construct or modify a problem-solving template

• to identify concepts required for the problem-solving template

Concept sorting

Concept sorting is the process of identifying and structuring concepts and their relationships in a specified

domain. The intent is to discover how experts/users/stakeholders understand and manipulate the concepts in their

environment. For instance, the analyst may be interested in identifying the concepts that play a role in the "Systems

diagnosis" PST, as perceived by a specific subject-area expert. Also of interest to the analyst is the discovery of how

the expert organizes or structures these concepts.

The analyst identifies a number of concepts that he or she believes play a role in a certain template, such as the

Systems diagnosis PST. Each candidate concept (e.g. "symptom", "blood panel") is written on an index card. A user

(or expert or other stakeholder) is asked to group these cards (usually about fifty cards are provided at a time)

53

This book is licensed under a Creative Commons Attribution 3.0 License

according to any criteria they wish to use. In our experience, the vast majority of groupings turn out to be l oosely

hierarchical or, more rarely, the groupings resemble a semantic net. Redundant concept cards are not only

permitted, they are encouraged. A concept that is used repeatedly in different groups is usually an important core

concept. For example, in one concept-sorting exercise, the concept "customer" occurred twelve times. Each time it

was used, it played a different role, such as "customer as purchaser" and "customer as complainer". In this instance,

from an OO perspective, different roles, states or attributes of the object type customer were being identified.

After the individual has completed the groupings, the analyst asks questions concerning the placement of the

cards, the shape (bell-shaped vs localized groupings), and the meanings associated with the particular placement

and spread. In our experience, this grouping remains relatively stable throughout numerous iterations. Generally,

at the completion of this technique, either a quick sketch is composed or a picture is taken of the grouping.

Concept sorting possesses several distinct advantages. It is an ideal way, and the quickest way, for the analyst to

become familiar with the landscape of a strange domain. The grouped concepts allow for a rapid survey of the

structure of the area of interest, as well as providing an expeditious way to bring recent arrivals to the project team

up to speed regarding the subject matter of the project.

Based on our experience, individuals with similar levels of experience will develop comparable models. It is

sometimes worthwhile to compare the concept groupings of experts with novices. Figure 3.2 shows two concept

sortings of identical concepts, showing the differences between an expert's point of view and the perspective of a

recently hired entry-level trainee. In this example, an expert horticulturist was given a number of cards with

concepts relating to soil conditioners and mulches. The expert differentiated between soil conditioners and mulch,

whereas the novice placed mulch as a kind of soil conditioner. In addition, the expert identified some concepts that

were missing (e.g. plastic, cover crops and peat moss) that the novice failed to identify. The results of such a

comparison can be used to educate novices and significantly decrease the learning curve. (As an aside, this

approach has been used to explain OO concepts to novices).

Figure 3.2: Concept sorting.

This technique also allows identification of incomplete information. Experts can readily identify the concepts

that are missing when they examine the groupings of cards, as well as recognizing concepts that do not belong.

The expert/user/stakeholder groupings may or may not resemble the hierarchies the analyst has developed for

the problem-solving templates. If they do not, the concept-sorting exercise can be used to explore the reasons for

the differences. Usually, the differences exist because of the varying objectives of each. An expert's grouping reflects

the way he or she has organized the concepts in order to most effectively use them during problem solving. An

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 54 A Global Text

http://creativecommons.org/licenses/by/3.0/

3. Knowledge elicitation techniques for cognitive models

analyst's grouping reflects his understanding that these concepts represent the candidate object types and function

as building blocks for the mapping to an object notation. The analyst is always free to utilize the expert's

arrangement of concepts, but a price is paid during implementation if the expert's concept relationships do not map

isomorphically to the relationships supported by OO notations. However, any concept hierarchies developed by the

analyst must make sense to the expert (e.g. "beech is: a tree" is correct, "beech is: a flower" is wrong), even if they

are not congruent with the expert's way of viewing and structuring the concepts.

The only disadvantage of concept sorting is the excessive number of concepts that can exist in large domains. A

prodigious number of concept cards can stupefy both the user and the analyst. However, concepts can be

categorized into groups (e.g. concepts referring to the rating part of the billing process), or level of abstraction (e.g.

the twenty most important concepts in the organization). A general rule to follow is to keep each session to about

fifty cards.

Concept sorting: example of uses

• to identify concepts and their relationships required by specific PSTs

• to identify the expert/stakeholders' view of relevant concepts and their structure

• to identify missing concepts

• to understand the domain of interest

Scenarios

Scenarios are test cases developed for either a simulated or natural environment where a person(s) or process or

prototype completes a task or solves a problem.

Scenarios have a greater context and complexity than is generally found in the usual test data. Scenarios include

most, if not all, of the processes identified for a specific project. Scenarios are presented to the individual, process

or prototype, and the results are analyzed. Scenarios can be designed to cover a range of difficulty and a variety of

types of problems. Our experience has been that scenarios are best applied to tough or salient problems, problems

at the edge of the domain, or problems with varying degrees of uncertainty. This use of scenarios is broader in scope

than Unified Modeling Language's (UML) use of scenarios.

Scenarios have been constructed for a variety of domains: to test a patent application process with several

possible show-stopper issues, to investigate the design of an engine cowl subject to severe environmental

constraints, and to determine the best mix of chemicals given shortages of certain ingredients. An example of a

lengthy scenario was a scenario that was developed to incorporate a set of very rigid, and conflicting requirements

for designing engine cowls. Given this set of requirements, the expert(s) were asked to design the engine cowl. The

purpose of this scenario was to determine the trade-offs that were made in the design, since all the requirements

could not be met satisfactorily.

The primary advantage of scenarios is its ability to identify the extent of brittleness and the boundaries of

expertise of a process, or of a prototype, along a continuum of problem types. In addition, it is based on realistic

problem solving, and does not rely on a person's memory.

However, scenarios have two disadvantages: they must be developed with care (it is important to design

scenarios to obtain the kind of output desired), and the deliverables can result in an overwhelming amount of detail

that requires careful interpretation. Also the tendency to use the scenarios to design systems to handle exceptions

rather than the general case must be controlled.

55

This book is licensed under a Creative Commons Attribution 3.0 License

Scenarios: examples of uses

• to help complete pattern description(s)

• to show a "thread" that cycles through most, if not all, processes and problem-solving templates of a

project, with an emphasis on discovering the brittle components

• to understand how an expert(s) solves difficult problems or how the expert handles exceptions

Observation

Observation is the act of viewing an individual while she is solving a problem or performing a task(s) in a

simulated or realistic environment. Observation can be unobtrusive or obtrusive. If unobtrusive, the analyst

watches, takes notes or videotapes without any interruption. "Obtrusive" refers to the agreement reached with the

observed person that the analyst can interrupt and ask questions during the observation period.

Observation is a particularly good technique when the analyst is interested in discovering how and why a person

makes a judgment or decision. It is particularly helpful for the Systematic Diagnosis, Heuristic Diagnostic, and the

"Modification" problem-solving templates. Watching a diagnostician diagnose the cause of equipment failure and

then the methods she uses to fix the problem can lead to a greater comprehension of the process than can be

acquired during interviewing. If it is videotaped, the analyst can later review the tape with the person observed. It

has been our experience that obtrusive observation is not as valuable as unobtrusive observation because the asking

of questions during the activity is generally disconcerting to the person doing the work. The flow of reasoning is

impeded.

The major advantage of the observation technique is that it allows the analyst to actually experience the

observed person's daily functioning rather than hearing the person's verbal report of it.

Not all activities warrant observation. Obviously the person must be performing task(s) that indicate that

decisions are being made, and the discovery of these decisions must be considered important by the analyst.

Observation can be used for a single pattern or a sequence of patterns.

Observation cannot show the reasons for the decisions. These must be obtained during the discussion following

the observation. In addition, the Hawthorne Effect can negatively impact the results. The "Hawthorne Effect" refers

to the phenomenon associated with watched behavior, where the behavior changes in response to the knowledge

that someone is watching.

Observation: examples of use:

• to help complete pattern descriptions

• to help construct or modify problem-solving templates

Event recall

Event recall is a situation where an individual recalls past situations he has experienced. This approach is

particularly useful for unusual situations that are often well remembered. It is especially good for attaining

understanding, although it can be used to gather facts. For example, the analyst, having developed a good rapport

and a trusting relationship with the user/expert/stakeholder, can ask such questions as: "What was the most

difficult network you ever had to engineer?"; "What made it so difficult?"; "If you had it to do over again, what

would you change?"

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 56 A Global Text

http://creativecommons.org/licenses/by/3.0/

3. Knowledge elicitation techniques for cognitive models

Event recall is not well-suited to asking questions regarding daily or routine activities. Research indicates that

individuals have a tendency to reconstruct memories rather than actually remembering them unless the memories

are outstanding for some reason. Reconstructed memories are subject to error and bias and cannot be relied upon.

Event recall: examples of uses:

• to gain a better understanding of the difficulties that could be encountered in a pattern

• to help complete a pattern description where the purpose is to establish the extent to which the process is

brittle and to identify the boundaries of the process in terms of unsolvable problems

Summary

A number of knowledge elicitation techniques have been presented that belong in every OO practitioner's tool

kit. Their use can substantially enrich the quality of the information obtained from experts/users/stakeholders, and

their use is necessary to construct KADS Object models.

Techniques designed to elicit cognitive material have been well discussed in the knowledge-acquisition

literature, and the reader is referred to these articles and books for further information on these and other

techniques (Ericsson & Simon, 1984; Gardner, 1996; Newell & Simon, 1972; Scott, Clayton & Gibson, 1991).

References

Ericsson, K.A., and HA. Simon (1984). Protocol Analysis: Verbal Reports as Data. Cambridge, MA : MIT

Press.

Gardner, K. (1996). KADS Object Class Syllabus.

Newell, A. & H. Simon (1982). Human Problem Solving. Englewood Cliffs, NJ: Prentice-Hall.

Scott, A.C. , J.E. Clayton & E. Gibson (1991). A Practical Guide to Knowledge Acquisition. Reading, MA:

Addison-Wesley Publishing Co.

57

This book is licensed under a Creative Commons Attribution 3.0 License

4. Mapping cognitive
patterns to objects

Mapping to objects overview

The concepts, relationships and behaviors expressed in the Knowledge-Acquisition and Design Structures

(KADS) Model can be mapped effectively to any object orientation (OO) notation. We have used different OO

notations in client project work including Martin and Odell, OMT, Shlaer/Mellor, and most recently Unified

Modeling Language (UML). The one constant in our engagement work has been a mapping of KADS patterns to

Martin and Odell's "Object Event Schema" (Martin & Odell, 1995). The analogous model representation in UML is

referred to as the Activity Diagram. These views show end-to-end processing and collaboration among objects at a

high level. We have used Intellicorp, Incorporated's animated computer-aided software engineering (CASE) tool

LiveModel to test the logic of the event schemas. It is our belief that objects must be related to business processes.

When objects are not tied to business processes, they are often disembodied from the realities of the business and

thus fail to meet the needs of the entire business. We are aware that this is a somewhat controversial belief, but

based on our experience, disembodied objects do not contribute as much value as do objects that are based on

processes. A common critique of entity relationship enterprise models has been that they frequently are of limited

use because they can be so removed from the dynamics of the business. It is true that processes can change over

time, but the object model should be an organic structure responsive to the inevitable change that occurs in

organizations. For instance, the notion of "customer" is perceived differently by different processes and these views

should be accounted for in the object model. New products may be released by an organization that change the view

of a customer as seen by selected processes. We are not suggesting a chaotic object model, but we are emphasizing

the flexibility and adaptability that comes with associating objects with business processes. Processes (business

and system) exist at varying levels of abstraction and each process is made up of sets of collaborating objects.

Hence, a diagram that shows this kind of collaboration at the process level is invaluable.

For the purpose of the following discussion, the assumption is made that readers are generally familiar with

object constructs. The emphasis is on the mapping activities rather than the actual construction of complete static

and dynamic object models. The chapter “A retail banking example” provides a case study using KADS Object,

showing the actual construction of complete object models.

A typical scenario follows: When the KADS models have been completed to the degree desired, the initial action

is the mapping of the concept description (the concept hierarchies) to an object-oriented static model. This is

followed by a mapping of the template and pattern description operations to object behavior. Because the

construction of the models takes place in an iterative/incremental development cycle, the initial modeling will be

incomplete. For the first iteration, the decision can be made to develop KADS Object models and OO models in

depth for one pattern, or a time-boxed approach can be used to develop as much of the models as possible for all

relevant patterns. The time-box period usually ranges from four to sixteen weeks, depending on the size and

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 58 A Global Text

http://creativecommons.org/licenses/by/3.0/

4. Mapping cognitive patterns to objects

complexity of the project and usually includes a prototyping effort. Prototyping aids in driving out user

requirements and testing the efficacy of the models. Based on the findings from the prototype effort (also time-

boxed), the models are modified and expanded. This continues until the project is completed (again, usually within

a time-boxed framework). The iterative/incremental approach to developing systems has its own set of issues (e.g.

scope creep), but we believe it is currently the best approach given competing needs (e.g. time to market vs quality

of system, rapid deployment vs adequate modeling and documentation).

As is probably evident, we consider an extremist rapid application development (RAD) approach to the

development of OO systems to be short-sighted. Without sufficient modeling and an underlying application

architecture, a system developed with tools designed to produce systems literally overnight results in the same

stovepipe applications and inflexible systems that have haunted organizations for years. Maintenance becomes a

nightmare and reusability an impossibility. While recognizing the need for organizations to move quickly, a

reasoned approach that attempts to balance the competing needs (e.g. speed vs the requirement for a robust

infrastructure to support the development effort) works the most successfully.

Mapping concepts to objects: overview

The hierarchies that have been constructed for the KADS Concept Description are made up of domain concepts,

the presence of which have been proven to be necessary to successfully complete the pattern (e.g. solve the problem,

make the decision or reach the conclusion). The decision as to which hierarchies should be developed, the

identification of the relationship expressed by each hierarchy, and the determination of which concepts should be

placed in the hierarchies is dependent on the requirements of the template in which the concept(s) play a role. In

addition, the expert's way of structuring the concepts and the area in which it is being used also affect decisions

about hierarchies. For example, the role "complaint", found in the "systematic diagnosis” template would require

various symptom concept hierarchies. The actual contents and organization of these hierarchies would depend on

the expert and the degree of discrimination required. A family practitioner may have needs for hierarchies dealing

with common complaints such as a sore throat, whereas a gastroenterologist might require hierarchies that refer to

specific locations of stomach pain. These concept hierarchies serve as candidates for object classes (i.e. object

types), object components and object attributes. Thus the concept description (one for each pattern) is the primary

source for the static object diagram.

Object behavior is obtained through two complementary KADS sources: the problem-solving templates

(specifically the "operations"), and the pattern descriptions (specifically the detailed operations). Object behavior

can be viewed from two perspectives:

• collaborative (i.e. the totality of the contribution of all pertinent object type behavior to a template

operation such as "match"), or;

• specific (i.e. the behavior of a particular object type).

Collaborative behavior can exist at several levels: It can reflect the behavior of a single template operation, or it

can reflect the behavior of an entire pattern or series of patterns. Knowledge of collaborative behavior assists the

designer in understanding the flow of a process and/or a thread of execution. It can also help structure testing and

performance analysis.

59

This book is licensed under a Creative Commons Attribution 3.0 License

If the strategic description has been created using problem-solving templates, its concepts and operations would

be mapped as above. In any case, no matter what role the strategic description plays, its contents would be mapped

to object types and/or behavior.

Mapping examples: KADS models

The examples used in this chapter are simplified examples (the chapter “A recent banking example” illustrates a

real-world case study in some detail) of models developed for a system to diagnosis problems afflicting plants. The

first activity for this particular engagement (as is true for all engagements) was to identify the processes. In this

case a single broad, high-level pattern (systematic diagnosis) was used to reflect the diagnostic process. Based on

this single metapattern, two subpatterns are shown for the purpose of this chapter. The problem-solving template

for the diagnostic pattern is shown in Figure 4.1, and the associated pattern description is shown in Table 4.1. The

first subpattern is based on the "select subsystem model" operation from the metapattern, and the second

subpattern is based on the "specify appropriate tests" operation from the metapattern. These are shown

respectively in Figure 4.2 and Figure 4.3, with their associated pattern descriptions shown in Table 4.2 and Table

4.3. Figure 4.2 is a classification pattern and Figure 4.3 is also a classification pattern, although the suitability

assessment pattern is a possible candidate template.

Figure 4.1: Systematic diagnosis.

Several concept hierarchies developed from these patterns are shown in Table 4.4.

At least one concept hierarchy exists for every "role" in each of the templates. Generally, however, roles include

more than one hierarchy. The number of concept hierarchies found in a role is determined by the needs of the

operation that will act upon that specific role.

As was discussed earlier, redundant use of concepts during knowledge acquisition is encouraged, because it

enables the analyst/designer to understand all the various ways in which the concept is used during the problem-

solving process. Therefore, any concept may appear more than once in several different hierarchies within a

problem-solving template, and may also occur in other problem-solving templates as well. In the sample

hierarchies above, the concept "insect" appears two times: once as the name of an "is-a" hierarchy entitled Insects,

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 60 A Global Text

http://creativecommons.org/licenses/by/3.0/

4. Mapping cognitive patterns to objects

and second as an entry under an is-a hierarchy entitled "Subsystem." Other possible hierarchies where the concept

insect might appear include a "part-of" hierarchy that describe the various parts of an insect, and an "attribute"

hierarchy that describes the attributes of insects (e.g. number of wings).

Table 4.1: Pattern description for plant-problem diagnosis metaprocess

Input:

• Symptoms

• Data on plant characteristics

• Data on insects, diseases and environment

• Insect, disease or environment subsystem

• Appropriate tests

• Actual test results (data values)

• Set of hypotheses

• Expected test results (data values)

• Set of most likely hypotheses

Output:

• Diagnosis

Operations:

• Select applicable subsystem (insect, disease or environment), using knowledge of plant characteristics,

and knowledge of insects/diseases/environment, based on presenting symptoms/evidence.

• Specify the appropriate tests to be used, given the selected subsystem model and the set of hypotheses

• Decompose the set of possible hypotheses from the selected subsystem model.

• Select actual test results (data values) and specify the expected test values.

• Compare the actual test results and the expected test values, and based on outcome, determine set of most

likely hypotheses.

• Specify or heuristic match the diagnosis.

Table 4.2: Process description for "select subsystem" subprocess.

Input:

• Symptoms (presenting) {attribute}

• Insect, disease and environmental data

• Plant characteristics data

• Symptom subsystem classification criteria

Output:

• Classified symptoms (subsystem)

Operations:

• Describe the presenting symptoms of the plant, using knowledge of plant characteristics and knowledge

regarding insects, diseases and environmental factors.

• Classify the described symptoms, using the symptom subsystem classification criteria, to one of three

61

This book is licensed under a Creative Commons Attribution 3.0 License

subsystem categories: insect, disease or environmental causes. The criteria includes the list of possible

symptoms, matched with insect, disease or environmental causes.

Figure 4.2: Select subsystem subprocess.

Table 4.3: Process description for specify appropriate tests subprocess.

Input:

• Subsystem {is-a}

• Insect

• Disease

• Environmental

• Set of diagnostic tests

• Set of subsystem hypotheses

• Subsystem test set

• Appropriateness criteria (attribute)

Output:

• Appropriate tests

Operations:

• Identify the tests that belong with a specific subsystem category (e.g. insect), from the set of all possible

diagnostic tests, based on the set of hypotheses to be tested for the specific subsystem.

• Determine appropriate tests to be run from the set of subsystem tests, based on the hypotheses

(subsystem specific) to be examined and appropriateness criteria.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 62 A Global Text

http://creativecommons.org/licenses/by/3.0/

4. Mapping cognitive patterns to objects

Figure 4.3: “Specify appropriate tests” subprocess.

Table 4.4: Selected concept hierarchies.

(1) Insects (is-a)

Chewing insects

Weevils'

Root

Wood

Sucking insects

Scale

(5) Subsystem (is-a)

Insect

Disease

Environment

(2) Diseases (is-a)

Fungus

Leaf spot

Rust

Leaf gall

(6) Plant (part-of)

Leaf

Root

Stem

Flower

(3) Fungus diseases (caused-by)

Leaf spot

C. handilli

E. concentrica

Rust

P. vaccini

7) Environmental factors (attribute)

Drainage:

Location:

Soil pH:

(4) Symptoms (attribute)

Leaf

Yellowed borders on leaves

Burnt edges on leaves

When the concept hierarchies are mapped to an object notation, the concept only appears once as an object type.

However, the analyst/designer can use the information regarding the presence of redundant concepts to identify

63

This book is licensed under a Creative Commons Attribution 3.0 License

required attributes, relationships, methods and messages. For instance, the redundant concept insect could occur

as a object type with attributes attached; it could also belong to a supertype called subsystem.

Figure 4.4: Object model example.

A particular hierarchy has a specific relationship (e.g. is-a) because an analyst/designer has determined that the

operation that will be manipulating the concepts needs to view the concepts from that perspective. The hierarchies

serve as basic building blocks that will be used to construct an object model. Hierarchies are similar to the pieces

that make up the components of a Lego set. The pieces (the hierarchies) can be used to build various structures

(object class design), each piece playing a specific role in the structure.

Mapping examples: object model (static model)

The first step in the mapping of KADS models is to consider the concepts found in the hierarchies as candidates

for object types and their attributes. We generally begin by assuming that all top-level concepts of is-a hierarchies

(i.e. the "name" or root node of a hierarchy) are candidate object types, and all the indented member concepts that

make up the hierarchy are candidate subtypes. This is followed by a mapping of the part-of concept hierarchies to

object component structures. This is completed for each process. Figure 4.4 illustrates the results of the initial

mapping of selected hierarchies from Table 4.4. Initially all is-a and part-of hierarchies are mapped, with the

understanding that during refinement, some hierarchies may be subsumed into other hierarchies.

While any object notation can be used, the examples are shown in the UML notation, using the Rational Rose

Case Tool. The case tool will eventually build a composite object model from the concept hierarchies input from all

of the KADS processes/templates. As the hierarchies from all the processes are mapped into the case tool, the tool

communicates redundancies to the analyst/designer. After the is-a and part-of hierarchies have been mapped, the

attribute hierarchies are either:

• assigned to appropriate is-a hierarchies as properties of that supertype or subtype;

• themselves subtyped; or

• become associations between object types.

Figure 4.5: Relationship example.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 64 A Global Text

http://creativecommons.org/licenses/by/3.0/

4. Mapping cognitive patterns to objects

The choice is a design decision, based on the application architecture, performance objectives, the development

environment requirements and so forth. The appropriate role of attributes in a particular project is one of the more

interesting decisions that class designers must make. These decisions are also based on answers to such questions

as, "Is the attribute shared by more than one object type?" and "Does the attribute itself have properties?" For

instance, if an attribute hierarchy is more than two levels deep, an argument can be made for subtyping it (e.g. the

attribute "color" has a property of "degree of saturation" and it is degree of saturation that will hold a value).

Cause-effect hierarchies are not mapped to object types as these kind of hierarchies represent a kind of

relationship that holds between classes. Usually the concepts found in "cause-effect" hierarchies are present in is-a

hierarchies as well. The cause-effect hierarchies show the relationship holding between, say, two is-a hierarchies.

For instance, a hierarchy may exist that expresses facts such as "C. handelli causes leaf spot". This association can

be modeled in object notation in several ways. For instance, as shown in Figure 4.5, C. handelli could be a subtype

of a supertype entitled "Disease-causing organism" with leaf spot being a possible subtype of the class "diseases", or

the relationship could be expressed in an association called "caused-by" existing between the "disease object type"

and the "organism object type".

At this point each of the hierarchies exists in isolation from each other. The building blocks (the hierarchies) are

now ready to be combined into larger and more coherent structures. The analyst/designer must begin to make

decisions concerning the structure of the integrated class design based on the KADS models and the purpose of the

proposed project.

Figure 4.6: Object model example with associations.

After the hierarchies have been mapped to an object notation, the analyst/designer begins to assemble the object

types into a class design, where some concept hierarchies may participate in an extensive inheritance structure,

while others may have relatively flat structures. The analyst/designer determines the relationships and required

multiplicity, resulting in a product such as the one shown in Figure 4.6. The information needed to complete these

class design activities can be found in the pattern descriptions and problem-solving templates, depending on the

level of detail present in these two sources. Relationships can be recognized by the associations between and among

concepts shown in the templates. For instance, potential relationships exist between the concepts found within the

"appropriate tests" role and the concepts found within the "test norms" role within the systematic diagnosis

template (Figure 4.1). Conversely, "test norms" could become an attribute of "appropriate tests". Potential

65

This book is licensed under a Creative Commons Attribution 3.0 License

relationships also exist between the "data values" role and the "test norms" role, because each role participates in

the "compare" operations.

Because the multiplicity is generally not explicitly described in the pattern descriptions, SMEs may need to be

involved in this determination. Depending on the extent to which the modeling has been completed, relationships

and multiplicity can also be explored and developed during prototyping.

The resulting object model, the first cut at class design, directly reflects the problem-solving templates in which

the hierarchies originated. Over time, the class design will be iteratively refined, nonbusiness-specific classes will be

added, and the design may require some changes to optimize performance. In our experience, however, the

underlying cognitive structure of the PSTs remains the foundation of the class design.

Nonbusiness-specific object types and classes (e.g. application and implementation) are usually added to the

object model after the mapping of the business concepts to objects. Examples of nondomain and lower-level object

types/classes that can be incorporated into the object model, depending on the needs of the project, include: "GUI

widget", "message processor", "message request", and so forth.

Mapping examples: object behavior (dynamic model)

Object behavior is identified using the pattern descriptions and the templates. The analyst/ designer has two

options (not mutually exclusive) for documenting further detail within the pattern descriptions. The high-level

pattern descriptions can incorporate more textual detail in the operations section. A second option is to describe a

subpattern by nesting a template operation (as discussed in the chapter “Introduction to KADS Object”). For

example, the highest level pattern in the plant-problem-diagnosis system has seven operations, each a candidate for

a subpattern. However, not every operation requires nesting; some operations are sufficiently trivial that modeling

them as subpatterns contributes little or no value. For instance, the "select" operation affecting the "Data Values"

role in the "Systematic Diagnosis" template is a relatively simple procedure that rarely requires a subpattern.

Nesting should only be done to help clarify a pattern and to manage the complexity of an operation. Eventually, the

operations could theoretically be nested to a level where only one concept is affected by one operation (i.e a

method). This is not recommended as a general rule. Chief among the issues is that the resulting extensive

documentation becomes burdensome. The KADS object models should serve as a major source of information for

individual class behavior, but the OO notations (e.g. interaction diagrams) should be used to formally model it.

In many instances, each template is first transformed into an event schema, preferably using a CASE tool or

drawing tool. Figure 4.7 shows the event schema associated with the "Systematic Diagnosis" pattern.

Each rounded rectangle in the "Event Schema" diagram represents an operation found in the problem-solving

template. Note that the existence of nested-event schemas within the high-level event schema (similar to nested

problem-solving templates (PSTs)) is indicated by shading top-level operations. Also note that input variables

(object types) and output variables (object types) are indicated near the rounded operations. The arrows refer to

messaging requirements. For the highest level diagrams, messages are described showing which objects will need to

collaborate to achieve the results of the operation to which the arrow points (destination).

At lower levels, messages can be described for individual object types. The triangle shown in Figure 4.7 refers to

a control condition that notates and describes a requirement regarding some condition that must occur (in addition

to the completion of the source operation) before continuing. Control conditions are described using if/then/else

rules. In the example in Figure 4.7, the triangle indicates that both operations must complete before continuing.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 66 A Global Text

http://creativecommons.org/licenses/by/3.0/

4. Mapping cognitive patterns to objects

Event-schema diagrams are unique to Martin and Odell's OOIE notation, and although many CASE tools

support it, there are several that do not. It is also important to note that the event schema is being incorporated into

the UML notation in the form of Activity Diagram. Again note in Figure 4.7 that each template operation is shown

as an operation in the event schema, where each operation in the event schema represents a collaboration of n-

number of objects, which are identified as input and output variables. The resulting model is then animated and

tested logically to determine if the underlying class design (which was previously entered into the CASE tool)

supports the collaborations. Once congruence between the object model and event schema is obtained, other more

detailed behavior diagrams can be completed.

Figure 4.7: Event schema for the plant diagnosis process.

A sequence diagram (formerly referred to in OMT as a "message trace") is useful for showing the specific

interactions between classes. The information needed to complete a sequence diagram can be found in the detailed

pattern descriptions, template models and use cases that have been developed. The higher-level pattern

descriptions/templates contribute to the development of sequence diagrams by illustrating which object

types/classes are closely associated, and indicating which object types/classes would benefit from being presented

in such a format. It should be noted that for large systems, the activity of creating sequence diagrams that

incorporate many classes can easily become overwhelming, and reams of diagrams are often produced that are

difficult to relate to one another. Figure 4.8 shows a sequence diagram for the plant-problem-diagnostic system

where the information needed to complete the sequence diagram is found in the problem description (see Table

4.1).

In addition to sequence diagrams, other behavioral diagrams such as collaboration diagrams, event flow

diagrams and state diagrams can be developed based on the information specified in the pattern description and

template models. Figure 4.9 below is an example of a collaboration-diagram view of the sequence diagram in Figure

4.8.

It is important to remember that the pattern descriptions and problem-solving templates at a high level of

abstraction provide the framework, context and organizing structure for developing sequence diagrams, event-

flow diagrams, state diagrams and use cases. Depending on the extent to which the templates/pattern descriptions

are nested and detailed, the specific information needed to develop thorough sequence diagrams, event-flow

diagrams and state diagrams may or may not be present in the KADS models.

67

This book is licensed under a Creative Commons Attribution 3.0 License

Business rules are often identified as part of the activity of describing the patterns. Depending on the project and

the object notation, these business rules may become objects themselves, or they may be modeled as constraints

affecting object behavior. The “A retail banking example” chapter covers this topic in more detail.

Design patterns can be used to further detail operations. A repository of reusable patterns can also be associated

with either templates or with operations within templates. For instance, any "select" operation could have several

design patterns associated with it, including a design pattern that defines how a select operation works.

For the examples shown in this chapter, a strategic description was not required and so is not discussed.

Summary

A KADS template representing the process by which the KADS models is mapped to an object notation is shown

in Figure 4.10.

Figure 4.8: Sequence diagram.

Figure 4.9: Collaborative diagram.

• Map concept hierarchies (concept description) to object types for each pattern

• Begin mapping the is-a hierarchies (as supertypes/subtypes), followed by the part-of hierarchies (as

compositions/aggregations).

• Decide whether attribute hierarchies will become attributes of an is-a hierarchy, be subtyped or be

expressed as associations.

• Decide whether caused-by hierarchies will be expressed as attributes or associations.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 68 A Global Text

http://creativecommons.org/licenses/by/3.0/

4. Mapping cognitive patterns to objects

• If other relationships exist (e.g. "followed-by"), decide whether relationship will be expressed as

attributes, associations, subtypes or other relationship supported by a particular OO notation.

• Construct and refine the static object diagram, using the pattern description and problem-solving

template model to identify and clarify associations and multiplicity. A static-object model is built for

each pattern. Generally one object model is automatically created from the multiple object diagrams by

the CASE tool.

Figure 4.10: Object mapping PST.

• Determine extent to which nonbusiness object types/classes need to be incorporated, based on goals and

objectives of the project. (Usually nonbusiness object types/classes are incorporated after the initial

mapping model has been logically tested, and are generally not included as part of an object business

model.)

• Map behavior from pattern description and problem-solving template to event schema (or equivalent) for

high-level, collaborative view, and to other Unified Modeling Language (UML) supported notations for

more detailed views.

• Map behavior that is concept—(object-type) specific to sequence diagrams or state transition diagrams

(or equivalent), based on information found in pattern description and problem-solving template model.

• Map use cases to problem-solving templates or to individual operations. (This option is described more

fully in the chapter, “A retail banking example”).

• Determine how business rules are going to be incorporated: as objects, as constraints on objects, as

controls over object behavior. The decision may be driven by choice of object notation.

• Determine how the strategic description is to be mapped, if a need has been identified for the existence of

a strategic description. Depending on the goal and objectives of the strategic description for a particular

project (and the choice of OO notation), the options can include:

• assignment of strategic concepts to "controller" objects;

69

This book is licensed under a Creative Commons Attribution 3.0 License

• global and/or local constraints on object behavior;

• assignment of behavior as attributes for business objects; and/or

• incorporation as business rules.

References

Fowler, Martin (1997). UML Distilled. Addison-Wesley Longman, Inc. Gardner, K. (1995). KADS Object

Class Syllabus.

Martin, James & J. Odell (1995). Object-Oriented Methods: A Foundation. Englewood Cliffs, NJ: Prentice-

Hall.

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy & W. Lorensen (1991). Object Oriented Modeling and

Design. Englewood Cliffs, NJ: Prentice-Hall.

Unified Modeling Language (UML) 1.0 (1996). Specification, Rational Software. 1996

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 70 A Global Text

http://creativecommons.org/licenses/by/3.0/

This book is licensed under a Creative Commons Attribution 3.0 License

5. Other uses of KADS Object
Introduction

This chapter addresses other uses to which Knowledge-Acquisition and Design Structure (KADS) Object has

been applied. Human or system activities that are characterized as knowledge intensive, or that are perceived as

complex, are generally considered good candidates for cognitive modeling. "Knowledge intensive" refers to any

process or activity that requires the application of expert reasoning and problem-solving ability based on subject-

area knowledge.

To date, KADS Object has been applied in four general areas:

• a knowledge-acquisition and design method for knowledge-based systems (the original purpose of the

Esprit KADS-I initiative);

• a cognitive pattern framework for object-oriented analysis and design for system development;

• a cognitive pattern framework for business process object modeling for the purpose of business process

redesign, reengineering or process improvement;

• a cognitive pattern framework for modeling technical architecture for object-oriented systems.

There is a wealth of information on KADS pertaining to the first bullet (knowledge-based systems), available in

published literature and public-domain papers from the Esprit/KADS project. Therefore it will not be addressed

here. The second bullet (pattern framework for object-oriented analysis and design) is discussed in detail in the

chapters “Introduction to KADS Object”, “Knowledge elicitation techniques for cognitive models”, “Mapping

cognitive patterns to objects”, and “A retail banking example”, and is the primary focus of this book. The

application of KADS Object to technical architecture is discussed in the chapter on chapter “Best practice: technical

architecture.”

This chapter briefly introduces several other diverse uses of KADS Object:

• business process modeling;

• enterprise metamodels;

• knowledge management;

• design patterns and use cases;

• business rules;

• user requirements;

• skill set requirements;

• training development;

Each is discussed in the sections below.

Business process modeling

KADS Object, as it has been applied in enterprise and process modeling, has provided a means for effectively

modeling existing processes as well as redesigned and reengineered processes. Development of cognitive patterns

often reveals subtle yet important differences in the way a task is addressed by an expert as opposed to a novice,

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 71 A Global Text

http://creativecommons.org/licenses/by/3.0/

5. Other uses of KADS Object

which can facilitate immediate benefits through simple process improvement measures guided by the cognitive

patterns. The following short case example illustrates this point.

The spare parts division of a manufacturing company was experiencing a broad range of

performance differences among their staff. Although the twenty employees of the division possessed

roughly the same educational and experience skill levels, only five of the staff were considered true

"experts" at determining spare parts stocking and reorder levels. “Expert” in this case was measured

in terms of maintaining adequate stock levels to handle variable manufacturing loads, while

minimizing inventory and overhead costs.

After several attempts at revising training and documentation materials relating to the task, there

was no measurable improve merit in performance. Management decided to develop cognitive

patterns reflecting the work of the spare parts division staff. The purpose of this exercise was to

determine if the cognitive patterns could reveal some "hidden" or embedded knowledge that the

experts were applying to the task, knowledge that might be leveraged effectively to the entire

division. Cognitive patterns were developed of experts for the stocking and reordering process. In

parallel, patterns were developed for the nonexperts for the same process. A comparison was made

between the patterns, and the differences became apparent quickly.

Although everyone in the division had access to the same information, the experts utilized certain

types of information in much more effective ways. For example, experts always compared historical

data on stock levels for certain parts against market forecasts. They established fairly predictable

patterns of spare parts demand at different times of year and reordered accordingly, always

maintaining optimum levels for manufacturing. The nonexpert staff stocked and reordered spare

parts by more of an ad hoc, improvised approach. They often found themselves overstocked with

some parts and backordered on other parts, never managing to maintain a good balance.

Knowledge of the problem-solving employed by the experts was formalized into a new set of

guidelines and policies for the spare parts division, and resulted in a dramatic improvement in their

overall performance and cost-effectiveness to the company.

This small effort resulted in immediate business value to the company, purely on the basis of process

improvement and redesign, without regard to object orientation (OO) or software deliverables. At

the same time, this company was applying the principles of knowledge management by capturing,

validating and distributing knowledge and expertise to the enterprise.

The example above illustrates a simple application of process improvement, based on some obvious behavior

modifications guided by the cognitive patterns of experts.

Developing enterprise metamodels

At the enterprise level, KADS Object patterns can be developed that capture all core business functions, primary

inputs/outputs, and all interrelationships across the enterprise within a problem-solving, results-oriented,

knowledge-using context. These enterprise metapatterns have proven very useful in early vision/strategy/planning

phases—to gain a holistic view of an organization and consensus among stakeholders, on where the critical areas of

corporate knowledge/expertise exist, how project activities should be prioritized, and illuminating obvious

candidates for process redesign. In addition, existing systems can be mapped to the cognitive enterprise

72

This book is licensed under a Creative Commons Attribution 3.0 License

metapatterns, indicating the extent to which an existing system supports one or more operations in the templates.

This activity presupposes a legacy inventory has been developed, which can then be mapped to the patterns. Figure

5.1 shows a template where the percentage coverage by particular legacy systems is indicated (e.g. for the operation

"compose", the legacy application referred to as "Cobra" covers the desired functionality by 50 per cent; the

operation "monitor" is assisted by several applications with a combined coverage of 100 per cent). This allows

organizations to assess their automated support for these cognitive operations and provides a basis for gap analysis.

For instance, when each system to be mapped is shown as a specific color overlay on a template, it is obvious when

there are redundancies (i.e. several systems supporting the same operation) and where there are gaps in coverage.

The gap analysis can be as detailed as desired.

Knowledge management

Patterns offer a formalized approach and notation for representing knowledge. If an organization models all of

its core business and sustaining processes from this perspective, and reorganizes itself to take advantage of this

"meta-knowing", then the organization begins to resemble a "knowledge organization" and can begin to reap the

benefits of its knowledge assets. If, in addition to using this approach, an emphasis is placed on reusability,

"knowledge reengineering" and lessons learned, then the organization begins to resemble a powerful "learning

organization" by leveraging existing knowledge into new forms of knowledge.

Although the ideas of knowledge and problem-solving are intriguing for their own sake, they have practical

applications. The use and implementation of these ideas by organizations assists them in viewing themselves as a

set of dynamic problem-solving processes rather than as a stale set of data flows and process hand-offs. Identifying

the major types, sources and locations of organizational expertise (intellectual assets) allows for the management of

these assets.

Figure 5.1: Gap analysis example.

Patterns and use cases

At some point it is useful to map design patterns to the template operations. As discussed previously, each

operation can be viewed as a high-level pattern. However, we believe that mapping design patterns to the

operations provides a useful context for design patterns, a kind of use guide. Eventually, a repository of design

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 73 A Global Text

http://creativecommons.org/licenses/by/3.0/

5. Other uses of KADS Object

patterns can be developed for each operation and/or template that would be useful to maintain in a particular

setting. For instance, in a robotics setting, the "select" operation may require design patterns that reflect "pattern

matching" and "determination of degrees of freedom".

Use cases, in our experience, are often misapplied. As an example, one organization recently developed, over the

course of several months, several hundred use cases at varying levels of abstraction. A couple of months were then

wasted attempting to find value in the use cases that had been so painstakingly accumulated. Eventually, they had

to start over again, because the lack of a common underlying structure or context meant there was no way to

evaluate the relevancy of individual use cases. The application of use cases without a sense of context and

recognition of the boundary conditions for a project can lead to confusion.

In our experience, the problem-solving templates provide a much needed context for use cases. Depending on

the level of abstraction desired, use cases can be developed for the template or for individual operations within a

template.

The list of basic steps that are involved in the application of use cases to problem-solving templates is as follows:

• Identify the purpose of the use case.

• Describe the actors (e.g. users) for each template (or operation).

• Identify the preconditions.

• Identify the primary flow of the use case, including the type of requirements the actors have regarding the

view/manipulation of the template/operation. Identify events that must send notification to the actors

when they occur.

• Identify the post conditions.

• Identify any alternative flow.

Applying the notion of a use case to the "systematic diagnosis" template (using the plant-problem example in the

“Mapping cognitive patterns to objects” chapter), candidates for actors would include botanists, nonprofessional

nursery personnel, customers, and so forth. The primary flow would describe such items as the screen design for

the entering of the complaint and the input required from the user. If, as is usually the case, there were several

templates where a customer was an actor, the combined-use cases where a customer was an actor could be

identified and tracked.

As with patterns, use cases can be applied at all levels of abstraction, depending on the needs of the project. The

boundary between analysis and design is fluid.

Identifying/developing business rules

Identification of business rules is accomplished during the task of modeling the pattern description and

problem-solving template. Generally, the analyst elicits business rules on a template-by-template basis. Business

rules are classified as either global or local. Often, global business rules impact one or more templates or core

processes. Global business rules can be derived from corporate policies such as "all customer inquiries shall be

resolved in real time" or "new orders will not be processed for accounts with balances over 90 days past due".

Local business rules impact a more constrained area such as an operation (e.g. "all contaminated soil samples

must be fumigated after testing"). This example of a local business rule could be associated with a specific operation

such as "specify appropriate tests" within the context of the systematic diagnostic template.

74

This book is licensed under a Creative Commons Attribution 3.0 License

Business rules are controls that ensure the functionality of the process. At a low level, they guide the behavior of

objects in order to produce process outputs. They can also establish the conditions for beginning or completing a

given process and are used to address exceptions and to enforce performance requirements. Global business rules

are usually modeled as object types themselves, whereas local business rules are constraints on specific object type

behavior.

Although the subject of inferencing in object-oriented (OO) systems is a topic unto itself, it is briefly discussed in

this section because inferencing rules can be considered a kind of business rule. The difference between inferencing

(i.e. intelligent) rules and normal business rules is that inferencing rules chain together. Depending on the output of

a given rule, that inferencing rule "fires" other rules. The path of this chaining inference cannot be easily predicted;

it is difficult, if not impossible, to know which rules will fire at any point in time. Normal business rules, on the

other hand, are more "stand alone", often acting as constraints on behavior; therefore, they are less problematic. To

date, no existing major object notation accounts for chaining rules; among the reasons for this is that chaining rules

can adversely affect encapsulation. Hence, when we embed intelligence (i.e. use chaining inference rules) in object-

oriented systems, we must adapt the object notation so that the chaining rules can be modeled and logically

incorporated.

Developing user requirements

For a variety of reasons discussed in earlier chapters, user requirements for systems development are often as

elusive as the embedded knowledge of the subject-matter expert. The templates can serve as the context for eliciting

general user requirements. Further development of business object models and development of conceptual

architecture can provide specific functional specifications in support of the user requirements.

In the course of iterative development of the KADS Object model, new aspects of the business process are

illuminated to the subject-matter expert, and new ideas emerge relating to concepts, behaviors and their

interrelationships. It has not been uncommon to hear comments such as "I didn't realize I used that information in

my decision making", or "I've been performing this task for a long time and never quite understood how it worked

until now". Concepts and behaviors necessary to perform knowledge-work can be expressed very succinctly and, in

turn, be used to represent complete, tested sets of user requirements.

User requirements are usually associated with operations and use cases. For instance, a select operation can

have user requirements at a functional level (i.e. "What exactly must the select operation perform?"), and at the

use-case level (e.g. "What actors are involved?" "What does the screen design need to incorporate?”). Examples of

user requirements are described in the case study in the chapter “A retail banking example”.

Identifying skill set requirements

KADS Object templates can be used as a guidelines for establishing skill requirements for various tasks. This

technique can be effective when used in conjunction with use-case development for the templates. The use cases

identify the business roles ("actors") that apply and use the knowledge. Skill requirements as they relate to specific

tasks described in the use cases can be analyzed for the purposes of business process redesign. New "knowledge

worker" roles can be identified, where the skill sets required for one specific pattern might be more effectively

applied across several related patterns. Also, this type of analysis can aid in development of detailed and specific

skill requirements for various roles. The skill set requirements can be identified at the template level or at the

template operation level.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 75 A Global Text

http://creativecommons.org/licenses/by/3.0/

5. Other uses of KADS Object

Training development

Boeing Commercial Airplane Group (Trott, 1996) has successfully developed training programs designed to

speed the knowledge-transfer process by creating knowledge models of expert users based on KADS. These

programs have been deployed with measurable positive impact on the organization.

Boeing sought to shorten the nine-month learning curve for users of CAD/CAM software by teaching them the

thinking process and strategies of expert users. They used KADS modeling techniques to identify, capture and

analyze the thinking practices of experts.

The methodology is designed to describe explicitly how experts use certain information to solve problems, deal

with uncertainty and minimize risks. Boeing has used KADS as the basis for instructional design, reference

documentation and process improvements.

Traditionally, Boeing training staff use task analysis to develop course content. This is appropriate for tasks that

can be directly observed and have a degree of procedure. However, task analysis has proven inadequate for tasks

with heavy cognitive components, tasks where a subject-matter expert thinks a great deal prior to acting. KADS is

used here to make the nonobservable thinking processes explicit.

The knowledge models used at Boeing were created by skilled analysts through structured interviews and

observations of expert users over a period of three to four months. The analysts then worked with course developers

to identify learning objectives and integrate the identified CAD/CAM best-thinking practices into the training

curriculum. Thus far, instructional designers have used the knowledge models to:

• identify or create training examples that illustrate specific cognitive tasks;

• develop a reference book that describes the knowledge models;

• create single- or multiple-task-based training courses (in which the models define the outline and concepts

on which the course will focus);

• create skill checks to test whether the student can perform the critical cognitive tasks at the desired level of

proficiency;

• identify specific points in the training curricula where expert processes should be used;

• begin a dialog with the process documentation staff to integrate these expert-thinking processes into their

processes and standards;

• create online simulations and job aids.

Boeing has married the KADS approach to training and process improvements. Their intention is not to replace

the experts, but to transfer expert-thinking strategies quickly, effectively and inexpensively.

Boeing has measured the impact of this practice in three ways:

Estimated return on investment

A conservative estimate of return on investment for one airplane program was 4,000 per cent per year, based on

reductions in the lost time of new users, the decreased inefficiency of current users, fewer errors in data sets, and

less demand on computing resources by inefficient data sets. That estimate also included an increase in the ease of

modification of data sets.

Testing students' abilities to perform the new skills

In one small field test of 70 students trained in CAD/CAM best-thinking practices and 30 untrained employees,

the results were clear:

76

This book is licensed under a Creative Commons Attribution 3.0 License

• All of the trained employees were able to construct a simple solid successfully while not even half of the

untrained employees were able to do so.

• The slowest student time among trained employees was about equal to the fastest student time among

the untrained employees.

• Trained employees produced almost all accurate models while untrained employees created mostly

inaccurate models.

• Models produced by trained employees had fairly efficient construction, while models from untrained

employees had inefficient construction.

• Most trained employees could correctly plan more complex parts, which they were able to construct in

CAD/CAM, untrained employees could not.

Decreased time in learning changes to CAD/CAM

As changes are made to the CAD/CAM program, training and process documents must be updated as well. They

will measure whether it is possible to implement these changes faster for each major block point of the CAD/CAM

software.

Building case bases

Boeing Commercial Airplane Group in collaboration with Inference Corporation (Trott & Leng, 1996) have done

some interesting applications of KADS modeling to support the building of commercial case bases using a CBR

engine. They have used the KADS methods to capture and describe the domains of interest for their case bases, as

well as developing models of expertise in diagnosis and classification. They have found that the KADS PSTs can

provide a very significant "jump start" on modeling troubleshooting cases that are typical of CBR case bases. Also,

they documented process improvements in building case bases using KADS in the following areas:

• Reduction in analysis time: they were able to create a robust, medium-sized case base (550+ cases, 100

questions, 180 actions) in only 9 weeks.

• Consensus on logic: the PSTs provided the SMEs with a common language from which to agree on logic and

efficiency of the troubleshooting approach.

• Improved quality: they were able to create a casebase with virtually no logic errors and to tune the

performance in minutes rather than hours.

References

Tansley & Hayball (1995). Knowledge-Based Systems Analysis and Design: A KADS Developer's Handbook.

Englewood Cliffs, NJ: Prentice-Hall.

Trott, J. (1995). Knowledge Modeling to Capture, Analyze and Transfer Expert Thinking. American Society

for Training and Development.

Trott, J. & Leng, B. (1996). An Engineering Approach to Building Troubleshooting Casebases. Boeing White

Paper.

Fowler, M. (1997). Analysis Patterns: Reusable Object Models. Reading, MA: Addison-Wesley.

Gardner, K. (1995). Position Paper on Knowledge Management. CSC White Paper.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 77 A Global Text

http://creativecommons.org/licenses/by/3.0/

This book is licensed under a Creative Commons Attribution 3.0 License

Part three: Applied cognitive patterns: best-practice models and case study
Summary

Part three consists of:

• “Best practice: technical architecture”

• “Best-practice reuse”

• “Best practice: testing OO systems”

• “A retail banking example”

This section provides examples of patterns developed from best practices of typical object-oriented (OO) life

cycle activities. Each activity explores the differences between the application of cognitive patterns vs. a traditional

approach and is drawn from direct project experience. The section concludes with a case study based upon an

actual project, which ties together the pattern development processes discussed throughout the book in a common

thread, and includes anecdotal references to common pitfalls and areas of greatest perceived business value.

Objectives

The objectives of part three are:

• to provide detailed examples of KADS Object patterns, directly applied to best practice in

OO development

• to contrast the specific differences between cognitive approaches and traditional approaches as applied to

OO development

• to reinforce the concepts and techniques of cognitive patterns by applying theory to a specific case study

example

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 78 A Global Text

http://creativecommons.org/licenses/by/3.0/

This book is licensed under a Creative Commons Attribution 3.0 License

6. Best practice: technical
architecture

Purpose

This chapter has two major purposes: to illustrate the use of cognitive patterns for describing how to design and

implement technical architecture, to define and justify the importance of technical architecture and to use patterns

to describe it.

Technical architecture that is designed and built properly is an important asset to large organizations.

Unfortunately, this value is not easily recognized. In fact, it is our contention that most organizations rarely

understand or appreciate the advantages achieved by building a solidly constructed architecture. They tend to

simply view technical architecture as the totality of all of the organization's automated systems.

In most organizations, the focus is on the development of applications. Such development is bottom-up and ad

hoc because the organization must quickly address the information technology back-log. Following this approach

without regard for the evolving "Big Picture", however, has resulted in poorly developed systems consisting of

client/server islands of information.

From a software engineering perspective, improperly or non-architected systems are no different from the

legacy systems we are re-engineering today. They are proprietary and tend to be informally designed and

documented. Furthermore, they do not integrate well with other systems or fit into an overall architecture

(Andrews, 1994). Despite these drawbacks, management often questions the time and money spent on the

development of a technical architecture. The preference is to purchase a client/server development environment

and hope to rapidly develop their way out of any predicament in which they find themselves.

To be effective, a technical architecture must exhibit a synergistic effect in which the overall system provides

functions and features that individual system elements alone cannot provide. By synergy we mean "...behavior of

whole systems unpredicted by the separately observed behaviors of any of the systems' separate parts or any

subassembly of the systems parts" (Fuller, 1971). Furthermore, the architecture must guarantee that the entire

system adapt to and display a predictable desired behavior when it becomes unstable through faults or saturation.

In contrast, poorly or informally designed architectures, where attention has been primarily bestowed on the

individual parts (i.e. applications) of the entire system, are characterized primarily by unpredictable behavior,

resulting in crashes or corrupted queues.

As mentioned previously, the specific purpose of this chapter is to define what we mean by technical

architecture, and identify the benefits of developing it by using a cognitive pattern approach. Also, we want to

examine how a cognitive pattern approach differs from traditional approaches for developing technical

architecture. Finally, we want to present cognitive patterns for some of the aspects of development of technical

architecture.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 79 A Global Text

http://creativecommons.org/licenses/by/3.0/

6. Best practice: technical architecture

Definition

We define "technical architecture" as the conceptual, logical and physical frameworks that describe the

structure, behavior, and collaborations of complex system elements required to fulfill the goals of the organization.

This definition implies that technical architecture is more than a collection of hardware, software, and

communication-enabling components; it forms the underlying infrastructure for the implementation of core

business processes. Technical architecture is viewed as sets of interacting patterns (cognitive and design).

Dimensions of technical architecture

In our view, there are three dimensions that can be used to describe technical architecture. They are:

• development phases;

• modeling approaches;

• technical architecture components.

The relationship among the development phases, modeling approaches and technical-architecture components

are shown in Figure 6.1. The dimensions are described in further detail below.

Figure 6.1: Dimensions of technical architecture.

Development phase dimension

The development phase dimension consists of information-technology (IT) vision and strategy, and the

conceptual design, logical design, and physical implementation subphases. The conceptual, logical, and physical

design elements together represent a more traditional approach for developing software. Although these three

elements are acceptable for applications, the vision and strategy component is necessary for technical architectures.

IT vision and strategy describes the long-term direction, planning goals and objectives that are aligned with

corporate strategies. Business vision and strategies are used as guidelines to determine IT requirements for

functionality, resilience to change and quality of service. Without synchronizing business and IT vision and

strategies, business and technical functions will most likely have a negative impact on the successful

implementation of distributed systems.

The conceptual design model defines the required system functionality and explains why it is required. This

model also defines the system elements, such as servers, clients, an ORB, and back-end legacy systems. The model

also defines the critical interfaces between these elements (Rechtin, 1991).

80

This book is licensed under a Creative Commons Attribution 3.0 License

The logical design model formalizes the relationship between system elements and the interfaces. System

objects are detailed at a level adequate for physical implementation. All collaborations are defined, with focus on

form, in order to maximize cohesion and minimize coupling. The resulting model is resilient to changes requested

by users and implemented by developers.

Physical implementation involves the actual construction of the architecture and its systems. This task is highly

dependent on decisions made in the selection of the software engineering environment and the experience of the

development staff.

Modeling approaches

Technical architecture modeling is conducted at several levels. Pattern modeling, object-oriented modeling,

simulation, and prototyping are activities important for the development of a technical architecture.

Cognitive patterns represent the highest abstraction within the modeling dimension. Core concepts of the

technical architecture are identified and basic functionality is determined. The Knowledge-Acquisition and Design

Structures (KADS) Object is used to obtain a cognitive view of technical architecture.

Object-oriented (OO) modeling translates the cognitive pattern view to one expressed in an object-oriented

form. Categories of hardware and networking components (servers, clients, routers, printers, etc.) and capabilities

are identified. The categories are mapped to classes and relevant behavior is determined. Any object notation (e.g.

Unified Modeling Language (UML), OPEN, Martin & Odell) may be used in the mapping.

System simulation allows the technical-architecture object model to be tested prior to its actual implementation.

The behavior of the proposed architecture is modeled at this time. The purpose of simulation is to determine the

performance and scalability attributes of the design prior to actual hardware and development tool purchases.

Prototyping is used for two purposes. The first is to drive out additional requirements not initially identified or

understood in the cognitive models of the technical architecture. The second purpose is to validate existing

requirements.

Technical-architecture components dimension

Technical infrastructure defines the structure of the system in the specific areas of hardware, system software

and communications networks. At this level, transaction volumes/sizes are modeled to determine the computer

hardware, network and system software (e.g. database) requirements. In an object-oriented environment, these

requirements and the associations between business objects and enterprise locations are used to design the

infrastructure down to the configurable component level. Since system management and support tools are

dependent on the technical infrastructure, their requirements are determined as part of the technical infrastructure

development activities.

System architecture defines the "overall structure of a system, including its partitioning into subsystems and

their allocation to tasks and processors" (Rumbaugh, 1991). In an OO environment, system architecture deals with

the structural and behavioral development of active and passive objects within an application as realized through

the technical infrastructure. Careful attention must be paid to object service levels, affinities between objects and

the protocols used to communicate between objects (synchronous, asynchronous, etc.). For example, the system

architecture determines which objects collaborate using a client/server communications model versus a group

multicast communications model.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 81 A Global Text

http://creativecommons.org/licenses/by/3.0/

6. Best practice: technical architecture

The software-engineering environment defines the tools and techniques for creating and maintaining elements

in support of the system architecture. Object-oriented software-engineering environments vary in their offerings of

tools, from complete application development and deployment environments such as Førté, Neuron Data and

NextStep, to those used for integrating objects and relational databases, such as Persistence. The choices are

very broad and have impacts on other architectural objectives, such as security and performance.

Business case for technical architecture

We believe that business processes are enabled by the design and implementation characteristics of the

technical architecture. Granted, this is an entirely technocentric point of view. Our contention, however, is that

technology functions at times as an impetus for new business processes, not necessarily the other way around. The

strategic advantage in developing a technical architecture, therefore, is that it permits the creation, extension and

enhancement of new or existing business capabilities. Implicit in this outlook is that technology and process are

closely coupled. Further, a properly designed architecture is an unbounded construct, in the sense that changes to

the business model can be reflected in the architecture.

The role of the information-technology organization has changed dramatically in the past ten years with the

advent of powerful development tools and the move toward decentralized computing. Business units within many

organizations, for example, have acquired their own IT resources and currently develop custom (legacy)

applications without consideration of an approach that leverages the value of an overall technical architecture. In

addition, the business environment has become extremely dynamic. The business process re-engineering

movement and approaches to continuous improvement are responses to the constant change found in today's

business environment (Hammer & Champy, 1993). IT has had to adapt accordingly.

A central theme in business system development is the requirement for modular and configurable business

processes. This requirement is mirrored in the so-called plug-and-play architectures that provide suitable flexibility

so that organizations are responsive to both customers and competition. Responsiveness to customers requires

technologies that enable the provisioning of superior services. Technologies must permit the modification of these

services as customers' needs change.

Responsiveness to competition requires that the organization be able to rapidly reconfigure itself and its systems

in order to adapt to competitors' changes and implementations of key market differentiators. Today IT is an

essential enabler with businesses striving to take advantage of technology push strategies to remain competitive.

The structure and behavior of the applications needed to support business drivers are dramatically different

from those implemented on host-centric systems, which served the enterprises' accounting functions faithfully for

many years. The move from host-centric, vendor-driven environments to heterogeneous, distributed, multi-vendor

environments using powerful software development tools has provided a tremendous amount of flexibility in how

systems are developed.

Flexibility is a double-edged sword, however, and it carries a hidden price. Flexibility adds complexity that was

previously factored out or managed by the vendor. The increase in complexity of design, implementation and

maintenance is caused by the fundamental characteristics of plug-and-play distributed systems (Coulouris et al.,

1994).

82

This book is licensed under a Creative Commons Attribution 3.0 License

These characteristics are:

• resource sharing—provides system users with uniform reference and access to hardware, communication and

software objects in a distributed scheme;

• openness—determines how extensible a particular system is with respect to hardware, software and

communications and how easily attainable through object interface specifications; often associated with

adherence to established or de facto standards;

• concurrency—ability of the system to provide service to multiple clients, providing users with a single system

image and an established quality of service while maintaining system integrity;

• scalability—ability to accept new resources to meet the demands of increased load;

• fault tolerance—insures that mission-critical services are correctly performed and completed; and

• transparency—determines to what extent the underlying network, protocols, hardware and system software is

hidden from the user; provides users with a seamless single-system view of what may be a complex,

distributed, heterogeneous environment.

These characteristics impact the design of the entire system and require balanced decisions around architecture

and engineering to meet the goals of the enterprise. A modular and configurable technical architecture is required

to effectively manage the complexity of large-scale systems in order to guarantee functionality, provide resilience to

change and insure quality of service.

Guaranteed functionality means that a system must do what it is intended to do. The system must provide an

acceptable level of performance, reliability, availability, scalability, consistency and security. These components are

often at odds, necessitating trade-off analyses when developing the technical architecture. For instance, there are a

variety of schemes for securing a system, with some of the more thorough methods having a negative impact on

performance. Balancing these components to meet business requirements is an architectural task that results in

formalized security and performance policies that management uses to guide development.

Resilience to change is an attribute of the architecture that is expressed in a modular design. Modularity permits

the organization to more easily maintain the existing architectural structure or add new technology to it. If changes

are required, they can be made without interrupting the underlying functionality. Resilience to change means that

the design and implementation of the architecture is focused on form, maximum cohesiveness and minimum

coupling.

Quality of service is closely tied to guaranteed functionality. Performance, reliability, availability and security are

important considerations here as well.

Each of these elements must be well understood and articulated in the design. For example, if a system must be

available 24 hours every day, it may be necessary to create redundant paths so as to insure failover.

Technical architecture: traditional versus cognitive approach

As has been illustrated above, complexity is the hallmark of technical-architecture structure and development.

During the 1970s and 1980s, complexity was rarely an issue, as most software-engineering efforts were much

smaller than they are today. Mainframes were the standard hardware platform and discussions around such topics

as "distributed services" were mostly theoretical. Thus, traditional approaches to the development of technical

architecture are largely inadequate for the kinds of systems needed today. Today there are many different diagrams

that are used to model architecture, with little coherence evident between them.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 83 A Global Text

http://creativecommons.org/licenses/by/3.0/

6. Best practice: technical architecture

One alternative is to examine technical architecture from a cognitive pattern point of view. That is, a cognitive

pattern approach clarifies what kinds of information are pertinent to the development of a technical architecture

and presents a uniformed consistent view of the functions of a technical architecture. The cognitive pattern

approach provides a problem-solving view that can serve as a coherent picture of the behavior of a technical

architecture.

Differences between traditional approaches for developing technical architecture compared with the KADS

approach are summarized in Table 6.1.

Other considerations

Technical infrastructure, system architecture and the software-engineering environment are the three principle

components of technical architecture. Each are influenced and developed during the conceptual and logical design,

with IT vision and strategy guiding the development effort. The development and design is accomplished using an

iterative/incremental approach and is not based on the "waterfall" life cycle.

To develop an approach for technical architecture, it is important to understand the nature of each technical-

architecture development phase. Technical-architecture development is part art and part science. As an art form,

technical architecture is a creative, nonlinear cognitive task that deals primarily with concepts. At the conceptual

level, the architect strives to maintain a fit and balance with what is feasible in reality (that is, looking toward

implementation). At this conceptual level the focus is on tasks (processes) that must be performed by the proposed

system. The scientific aspect of technical architecture is a logical and analytical linear task that deals with well-

defined problems and is more applicable to the logical model. At this level the focus is on system engineering or the

form of the system. The linear and nonlinear aspects do not take place in isolation, but one aspect is predominant in

each task.

Table 6.1: Traditional approaches versus KADS.

Traditional approach KADS approach

focus on the "how" of technical architecture

development; emphasis on "cans and wires"

focus on the "what" of technical architecture

development; emphasis on patterns

relationship between technical architecture

development phases, architectural components and

modeling approaches not clearly articulated

relationship between technical architecture

development phases, architectural models and modeling

approaches clearly articulated

business objectives which influence technical

architecture not always apparent

business objectives, expressed in patterns, can be

directly linked to patterns in the architecture, by phase

and by model

no clear understanding of the influence of technical

architecture on business objectives

greater comprehension of the influence of technical

architecture on the creation, extension, objectives and

enhancement of new or existing business capabilities

the relationship between technical architecture and

the non-functional requirements such as security,

reliability and availability is not always clear

greater understanding of the relationship between the

technical architecture and nonfunctional requirements

because of the ability to indicate the pattern

relationships, e.g. the relationship between the "security

84

This book is licensed under a Creative Commons Attribution 3.0 License

pattern(s)" and the patterns associated with "distributed

object system architecture"

Because of the difference between linear and non-linear modeling, important information is often lost between

the conceptual level and the logical level. Our approach is to base the modeling that is performed at both levels on

the notion of an architectural framework composed of cognitive patterns and design patterns, which are then

mapped to an object notation. What is an architectural framework and what are design patterns? According to

Coplien and Schmidt:

"Architectural frameworks express a fundamental paradigm for structuring software systems. They provide a set

of pre-defined subsystems as well as rules and guidelines for organizing the relationships between them" (1995).

These frameworks provide a context to describe the overall system architecture discussed previously.

Frameworks are composed of cognitive patterns and design patterns.

“Architectural design patterns describe a basic scheme for structuring subsystems and components of system

architectures, as well as the relationship between them. It identifies names and abstracts a common design

principle by describing its different parts and their collaboration and responsibility" (Coplien & Schmidt, 1995).

The architect utilizes a repository of architectural frameworks and patterns and builds a conceptual model to

drive selection of implementation components and logical design. The components, along with their strengths and

weaknesses, are reviewed with the client and a selection is made based on "fit, balance and compromise" (Rechtin,

1991). The conceptual models are mapped to static and dynamic object models that reflect the logical model for

validation using a CASE tool (preferably capable of animation [e.g. LiveModel]).

Modeling the technical architecture as a set of collaborative objects based on the frameworks and patterns helps

the technical architect meet the goal of seamless integration between the conceptual and logical domains to

maintain conceptual integrity and preservation of architecture in the system.

The logical design is validated and verified using static and dynamic testing, performance modeling, reliability

testing, and quality-assurance testing. Inconsistencies or defects found at this point are still inexpensive to fix and

modifications can be made to the models with minor impact. The logical model is validated with a focus on form,

maximum cohesiveness and minimal coupling, to ensure resilience to change. Simulations or prototypes may be

developed to test the behavior of the proposed design without actually having to implement the system. Once

validated, the object designers drive the logical design down to the level where either (1) system builders can create

the implementation from the tested models, or (2) the implementation can be generated by a CASE tool capable of

code generation.

Best-practice pattern: technical architecture

The following section presents the application of cognitive patterns to the development of a technical

architecture.

Cognitive technical-architecture patterns

The high level of "technical-architecture development pattern" is composed of the patterns required to develop

the following three components:

• distributed-object-system architecture;

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 85 A Global Text

http://creativecommons.org/licenses/by/3.0/

6. Best practice: technical architecture

• technical infrastructure;

• software-engineering environment.

Each of these components is composed of the common development phase deliverables described previously in

Figure 6.1. The following templates may be executed top-down, bottom-up, sequential or in parallel, depending on

the context and complexity of the problem domain. A strategy must be developed for each specific project that

orchestrates the execution of these patterns in order to develop a robust technical architecture.

The following discussion illustrates the high level technical-architecture development pattern diagram, its

associated pattern description, its concept description and selected drill down into its operations.

Figure 6.2: Technical architecture development.

Technical-architecture development pattern
Pattern description

The high-level pattern provided in Figure 6.2 represents an organizational structure for developing a technical

architecture. It is a very high level pattern and thus cannot be equated with any of the KADS library templates. The

diagram is composed of five operations, some of which are shadowed to indicate that they will be presented as

subpatterns later in greater detail. Each operation in the high-level KADS pattern is described in the following

pattern description, which has been modified to include the rationale for completing each operation/subpattern.

Pattern 1.o: Extract the vision and strategy of the system that is being architected. It is imperative that the

system architect understand the business and technical vision of the subject-matter experts in the organization. A

strategy for delivering the solution is developed based on this vision.

Often the architectural development runs into roadblocks when the architect\the stakeholders do not have a

clear vision of the system goals, scope and, ultimately, the solution. Once the vision is understood, a strategy to

86

This book is licensed under a Creative Commons Attribution 3.0 License

fulfill that vision is communicated to the stakeholders for buy-in. Unless the architect can get the stakeholders to

agree on a common vision of the solution, the architectural-development program is most certainly doomed to fail.

In formulating the vision and strategy for the program, the architect relies on his architectural knowledge and

experience as well as industry best practices. These concepts play a crucial role in the development of the vision and

strategy because they provide a reality check (Rechtin, 1991) on whether the vision is deliverable. The information-

technology industry is very familiar with stories of failed projects that were the result of a great vision but poor

implementation. Many of these failures were due to unrealistic expectations on the technology as well as poor

delivery, but in many cases the organization was too immature to survive the technology transfusion proposed by

the architecture. For this reason, it is important to consider the process maturity of the organization that will be the

ultimate user of the architecture. If the organization's process management is ad hoc or chaotic, there is likely to be

too much risk associated with introducing advanced technology into the organization.

At the end of this operation, a document is developed that captures the vision and strategy for architectural

development for the components technical infrastructure, the distributed-object system and the software-

engineering environment.

Pattern 2.0: Develop the conceptual technical architecture. This operation entails the identification and

partitioning of the core system tasks and the development of the conceptual models of the infrastructure,

distributed objects and development environment. This operation is expanded upon later in the chapter.

Pattern 3.0: Develop the logical technical architecture. This operation involves the system engineering and

detailed design of system. Whereas the architect partitioned the system into a loose confederation of well-defined

collaborating tasks, the system engineer's role is to define the system interfaces and rules for collaboration. The

system designers then detail the system out to a level where builders can implement the solution. This operation is

describe more fully in a subsequent portion of this chapter.

Pattern 4.0: Develop the performance engineering model. This operation entails the creation of a

performance engineering model to ensure that the system will provide the levels of service envisioned by the user.

For instance, the Network Model is created and is simulated to determine if the proposed architecture has enough

bandwidth to service the system load. The performance engineering model is used as input to the logical design in

an iterative fashion. A detailed description of this operation is found later in the chapter.

Pattern 5.0: Create a physical implementation. This operation entails building the infrastructure,

distributed-object system and software engineering environment. All or parts of this activity will require highly

skilled craftsmen who are well versed in the various domains, such as networks or ORBs. Once this process is

completed, a physical implementation of the architecture is realized and collaborating objects can be configured to

build the GUI implementations using the software-engineering environment and user-interface architecture. This

effort may range from I-CASE generation of the application to Visual C++ interfacing to an ORB through the

architecture.

Concept description (with examples)

Presented below is a concept description for each of the concepts represented in Figure 6.2, and which has been

modified to show possible sources/format and examples.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 87 A Global Text

http://creativecommons.org/licenses/by/3.0/

6. Best practice: technical architecture

Concept name Definition

Possible sources

and format Example

Best practices A composite view of what

is considered by experts to

be the best approach to

solving a specific set of tasks.

Documents, published

standards

"Based on a study of 50 IT

organizations, technical-

architecture development

covers at least four distinct

development phases with

specific deliverables for

each..."

Architecture

knowledge and

experience

Heuristic, embedded

knowledge about technical

architecture, which is

acquired through experience.

Anecdotal knowledge,

not typically documented.

"Our earlier attempt at

technical architecture was

not entirely successful

because we neglected to

confirm the vision and

strategy with the executive

committee. That oversight

had significant impact on our

ability to..."

Business object

model

A set of diagrams and

definitions showing the

primary relationships and

associated behaviors of

business concepts.

Diagrams, definitions

& data types, often

modeled within an OO

case tool.

"Our model contains a

'customer' class, which has

three subtypes ('individual,'

'small business' and 'large

business') and is related to

two other classes: 'account'

and 'product' in the following

ways..."

Concept name Definition

Possible sources

and format Example

Vision and

strategy

The vision states the

business goals, objectives

and scope of the system

being architected. The

strategy is the tactical plan of

how to achieve the vision.

Descriptive

documentation, including

strategic plan,

architectural plans, etc.

"Our vision is to have

leading market share in the

North American auto-rental

market by June 1998. Our

strategy is to implement an

intranet with intelligent

agents to facilitate optimized

inventory distribution."

88

This book is licensed under a Creative Commons Attribution 3.0 License

Patterns and

frameworks

Any reusable architecture

that experience has shown to

solve a common problem in a

specific context.

Reusable

diagrammatic and code

templates.

"This customer-care

application bears a striking

similarity to two other

projects we completed last

year. There appears to be a

common thread between this

conceptual design approach

and the design approaches

from the other projects . . ."

External

interface

descriptions

Interface description to

systems outside the

implemented architecture. A

detailed and complete

external interface description

is essential to building

seamless object wrappers.

A logical and physical

description of the

protocols used to

communicate with

systems outside of the

implemented

architecture.

The Customer Order

Fulfillment system (COF) is a

real-time system that exposes

a TCP-IP socket interface at

port x. The following event

trace depicts the logical

protocol for sending an order

to the COF system.

Concept name Definition

Possible sources

and format Example

Distributed-

object model library

An interface library that

seamlessly provides access to

objects distributed

throughout the system

environment.

A set of models and

application programming

interfaces (APIs) that

provide enough

information to enable

client applications to

collaborate with objects

represented in the

library.

An object model segment

depicting the class

associations and

relationships of the key

objects in a material-

distribution network. An

event schema depicting the

protocol for trans-shipping

between nodes in the

network. Pre-and post-

conditions that are expected

by the model to maintain the

integrity of a trans-shipment

transaction.

Conceptual

technical

architecture

A conceptual, or

"unconstrained", framework

of the technical architecture,

which is an aggregation of

A set of model-based

diagrams, maintained at

high-level (conceptual)

and easy to understand

A diagram depicting

(graphically) major

architectural components and

their relationships, such as

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 89 A Global Text

http://creativecommons.org/licenses/by/3.0/

6. Best practice: technical architecture

conceptual distributed object

model, conceptual

infrastructure, and

conceptual development

environment.

clusters of client work

stations connected to middle-

tier servers, which in turn

connect to back-end

mainframe systems and

databases via routers and

gateways.

Concept name Definition

Possible sources

and format Example

Logical technical

architecture

A finer-grained

"constrained" architecture

that has been engineered to

work within a finite set of

interface styles, protocols and

standards. Architectural

components at the logical

detail level are selected for

prototyping and performance

engineering, culminating in a

detailed design specification.

Detailed, technical

design documents

including diagrams,

technical specifications,

interface definitions,

performance engineering

and simulation

benchmarks.

Design specifications that

drive the major components of

the conceptual technical

architecture to sufficiently

fine-grained detail to

implement.

Performance

engineering model

A performance

engineering model is a

simulated implementation of

the target production

environment, designed to

validate the technical

architecture design and make

any adjustments to optimally

achieve business and

performance goals.

The actual

performance results

(documentation) of

running business objects

in a simulated

environment, including

architected messaging

protocols, transaction

volumes and other

environmental conditions.

"Initial results of our

simulated model indicate that

the recommended distributed-

object architecture based on

an ORB and thin client

approach will easily

accommodate your projected

transaction volumes and

response times through the

year 2005. It should be noted,

however, that one ORB vendor

clearly outperformed the other

three in the following areas..."

Concept name Definition

Possible sources

and format Example

Physical

implementation

Creating the physical

environment to enable

Physical

manifestations of all

"The development team

has been provided with a

90

This book is licensed under a Creative Commons Attribution 3.0 License

realization of the technical

architecture. This includes

building the infrastructure,

distributed-object system

and software-engineering

environment.

architectural components

(servers, ethernet cable,

routers, databases,

software development

tools, etc.)

room with a Sparc 20 and

four NT workstations

connected to the network

backbone. The Sparc is

partitioned to include a

subset of test Oracle data

from our production system,

and all development work

stations are workgroup-

enabled with version 4.0

Elements

Environment under

version control. The team has

access to the mainframe for

performance testing during

off peak-hours ..."

The nested subpatterns 2.0 (develop conceptual technical architecture), 3.0 (develop logical technical

architecture) and 4.0 (develop performance engineering model) from the metapattern are shown, respectively,

below in Figure 6.3, Figure 6.4 and Figure 6.5, followed by their pattern descriptions.

Subpattern 2.0 (develop conceptual technical architecture): pattern description

Subpattern 2.1: Identify core system tasks. This operation entails the identity of the core tasks of the proposed

system in each of the areas in order to meet the functional requirements of the business object model. The architect

partitions and aggregates (Rechtin, 1991) the tasks and subtasks in an effort to model component concepts and

their fundamental relationships and behaviors. This is one of the most difficult aspects of system architecting due to

what has been historically called the "bootstrap problem". In complex systems, the bootstrap problem is

understood as not knowing where to start in discovering the core tasks and concepts. To help overcome the

bootstrap problem, the architect uses heuristics and documented patterns and frameworks (Coplien & Schmidt,

1995). Technical architecture metamodels such as the CORBA reference model also help in the partitioning of the

system into component parts.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 91 A Global Text

http://creativecommons.org/licenses/by/3.0/

6. Best practice: technical architecture

Figure 6.3: Subprocess 2.0: develop conceptual technical architecture.

Upon completion of this activity, a set of KADS Object models of the core system tasks are developed at a high-

level. The deliverable consists of high-level functional models, concept hierarchies and concept definitions.

Subpattern 2.2: Design "conceptual distributed-object model". This operation involves the identification of

the appropriate architectural styles from a distributed-object model library, taking into consideration the location

dependencies of the system. For instance, a company may have acquired a division across the country that is the

only division with specialized asynchronous data feeds requiring an agent architectural style that communicates

with a daemon monitoring the feed. It is important to identify the style, as it will require specialized infrastructure

support at that location.

Furthermore, it is important to develop a distributed-object model before the infrastructure and software-

engineering environment, in order to maintain a higher level of abstraction for problem-solving. Since a purpose of

the architecture is to manage system complexity, it is imperative that overall architecture be understood. Once the

structure and fundamental behavior of the system is determined, the system engineers, designers, and architects

can define components of the system and engineer those component to ensure that the architectural vision is

complete. The output of this activity is the distributed-object model, which implements the business object model

and identifies the structure and behavior of high-level system concepts to support that model.

Subpattern 2.3: Design conceptual infrastructure model and software-engineering environment model. Based

on the input from the distributed-object model, the core tasks for each model are identified and executed in a

manner similar to subprocess 2.1. For instance, the "vision” of the software engineering environment may have a

task: "leverage reuse at the analysis and design level". In order to implement this task, a repository and intelligent

browser may be required. The repository would impact the infrastructure model by affecting the ability of the

network to work with the repository as well as with disk storage and server processing requirements.

Some iteration over the requirements and architectural styles is required in order to make the components

orthogonal (possibly regrouping them) and to minimize coupling and maximize coherence.

92

This book is licensed under a Creative Commons Attribution 3.0 License

In order to better communicate the solution and maintain conceptual integrity of the architecture, model

diagrams are often created. Schematic diagrams are less understandable and tend to alienate subject-matter

experts (SMEs) and stake-holders of the architecture. It is important, therefore, that stakeholder-friendly diagrams

be created, distributed, and maintained.

Subpattern 2.4: Compose the "conceptual technical architecture". This process involves reviewing the models

and diagrams with the stakeholders, making the necessary revisions and obtaining sign-off before proceeding. The

models are then placed under change control to safeguard their content. With respect to project management, the

completion of this activity is a major milestone.

Sub pattern 3.0 (develop logical technical architecture): pattern description

Figure 6.4: Subprocess 3.0: develop logical technical architecture.

This operation entails the identification and specification of the interfaces between the components of the

architecture defined in the conceptual model by the system engineers. Each component is designed to a level of

detail suitable for creation of the performance engineering model. The result of this task is a detailed specification

of the interfaces and components to a level suitable for implementation.

Supattern 3.1: Engineer system and create a "system-engineered design". This process requires the

development of a detailed analysis, specification and design of the component interfaces. The system engineer,

working with a finite set of interface styles, protocols and standards, specifies the allowable system interfaces to be

used in the implementation of the system. In a distributed-object system, this will include a messaging strategy and

message-stream definition (such as semantic data streams), using standard protocols to meet overall performance

requirements. This is not a trivial task and requires considerable systems experience and more manpower than the

conceptual architecture task.

Subpattern 3.2: Select the system component for design. Based on dependencies determined by the system

architect and project manager, a system component is chosen for detailed design.

Subpattern 3.3: Design the detailed design. Each component of the conceptual architecture is decomposed in

greater detail to a level where a solution can be synthesized. Based on the principles and standards of the

architecture and engineering efforts, designers create detailed designs that can be implemented by the system

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 93 A Global Text

http://creativecommons.org/licenses/by/3.0/

6. Best practice: technical architecture

builders. Simulate the detailed design. Simulation is a tool that should be in every designer's toolkit. It is important

that the designer be able to animate/simulate their designs to ensure that they meet the system requirements.

Ideally the designers work in a distributed simulation environment where they share simulation sets of targeted

system loads and capacities with the performance-engineering role.

Subpattern 3.4: Prototype the detailed design. Sometimes the only way to truly understand the requirements

and behavior of a component is to actually build a scaled-down version of the implementation. This activity is akin

to breadboarding in digital design and is an important tool for the system designer. Prototyping activities must be

well defined and then viewed for what they are: an incomplete, quick-and-dirty reality check. Certainly parts of the

prototype may be scaled, re-engineered to standards and integrated into the overall design. It is important that

prototypes not move directly into production.

Subpattern 3.5: Compose the "logical technical architecture". This task requires reviewing the designs with

the system engineer and architect to insure that they comply with the system standards and do not violate

conceptual integrity constraints. The designs are then placed under change control to safeguard their content. With

respect to project management, the completion of this activity is a major milestone.

Figure 6.5: Subprocess 4.0: develop performance-engineering.

Subprocess 4.0 (develop performance engineering model): pattern description

The development of a performance-engineering model allows the architect and systems engineer to estimate the

performance of a technical architecture. Models are representations of actual systems. They are constructed in

those instances where the real systems are too complex to understand or the costs to build them prove excessive.

The advantage of modeling a system such as an architecture is to reduce the risk of its implementation by

predicting with a high degree of assurance how well a particular configuration will work. Modeling involves

simulation whereby the behavior of the system is imitated using particular mathematical or logical relationships. By

definition, the model is inferior to a real system in that the functionality that is to be simulated is incomplete.

However, this constraint makes modeling a useful and feasible activity. The goal of modeling an architecture is to

94

This book is licensed under a Creative Commons Attribution 3.0 License

produce one that captures relevant functionality and yet is parsimonious enough to be examined in a reasonable

amount of time.

Subpattern 4.1: Decompose the "logical technical architecture". This process breaks the elements of the logical

technical architecture into a validated logical model by further refining the technical-architecture components. The

architecture model is checked for completeness and accuracy.

Subpattern 4.2: Decompose the "validated logical model". The validated logical model is decomposed further

into object diagrams. These components provide the architect and system engineer with a view of the structural and

behavioral aspects of the overall object model. The object model is a representation of the logical technical

architecture in the form of object classes and their relationships.

Subpattern 4.3: Select a collaborating set of objects. The selected objects are chosen by some criteria that is of

interest to the architect or systems engineer. The criteria may include objects that are affected or are thought to be

affected by bandwidth, CPU, volume or some other characteristic of interest.

Subpattern 4.4: Match the selected objects. The selected objects are matched to corresponding configuration

and performance data. The configuration data may include criteria about a particular kind of server or bandwidth

limitations of the network. The performance data may represent desired behavioral attributes such as arrival rates

of transactions. The output of this process is a set of configured objects.

Subpattern 4.5: Update the "static object diagram". The static object diagram is updated based on the set of

configured objects. This is an iterative process, which may be repeated until the performance engineer, system

engineer and architect are satisfied with the correctness of the object model.

Subpattern 4.6: Develop a network model and a distributed-object model. The network and distributed-object

models are developed based on the object model and a simulation approach. The simulation may include the

development of approaches for modeling queuing limitations, timing constraints and messaging. Each of these is

challenging and may require specialized knowledge or experience with the construction of stochastic and

deterministic models.

Subpattern 4.7: Compose a system-simulation model. Using the network and distributed-object models,

compose a system-simulation model. This process brings together the proposed network components as well as the

proposed object components.

Subpattern 4.8: Implement the performance-engineering model. Based on a system-simulation model and a

simulation environment, the performance-engineering model is built and exercised. The performance data

generated by the model is used to refine the logical technical architecture.

Summary

Today's dynamic business environment has placed complex demands on the use of information technology.

Systems must be reliable and maintainable. They must meet specific performance levels and be usable.

Furthermore, systems need to be resilient to change, despite the ever-changing structure of competitive enterprises.

A well-developed and understood technical architecture allows organizations to achieve business goals and

objectives by maximizing the utility of information and using emerging technologies. The use of patterns at all

levels of abstraction assists the architects in managing complexity and provides an easy to understand notation for

all participants. KADS patterns have been used to illustrate their use in modeling how to design technical

architecture.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 95 A Global Text

http://creativecommons.org/licenses/by/3.0/

6. Best practice: technical architecture

References

Andrews, T. (1994). " 'Thick' Technical Infrastructure Enables Business Change," CSC Presentation.

Coplien, J.O. & D.C. Schmidt, eds. (1995). Pattern Languages of Program Design. Reading, MA: Addison-

Wesley.

Coulouris, G., et al. (1994). Distributed Systems: Concepts and Design. Reading, MA: Addison-Wesley.

Fuller, R.B. (1971). Operating Manual For Spaceship Earth. NY: E.P. Dutton.

Hammer, M. & J. Champy (1993). Reengineering the Corporation. NY: Harpers Business.

Rechtin, E. (1991). Systems Architecting: Creating and Building Complex Systems. Englewood Cliffs, NJ:

Prentice-Hall.

Rumbaugh, J. (1991). Object-Oriented Modeling and Design. Englewood Cliffs, NJ: Prentice-Hall.

Shaw, M. & D. Garlan (1996). Software Architecture: Perspectives on an Emerging Discipline. Englewood

Cliffs, NJ: Prentice-Hall.

96

This book is licensed under a Creative Commons Attribution 3.0 License

7. Best-practice reuse
Purpose

The purpose of this chapter is to present our approach to the reuse of both patterns and object models. The

objective of reuse, as it relates to object-oriented (OO) development, is to enable the most often touted, yet seldom

achieved, benefit of the technology: rapid, economical component-based software assembly. The impediments to

successful reuse can generally be traced to cultural rather than technological origins, as will be discussed in this

chapter. Patterns, such as those developed in knowledge-acquisition and design structures (KADS) Object, hold

great promise for reuse and distribution across an enterprise. We view distributed-knowledge models as the key to

successful knowledge-management practices—the ability to capture, store, query and distribute knowledge to the

enterprise. The issues facing object reuse and reuse of patterns are quite similar, as might be expected. This chapter

discusses some of the central issues and approaches around effective reuse of patterns, specifically as it relates to

object orientation. Patterns are used to illustrate how best to achieve reuse in an organization.

Definition

The definition of reuse can be found by answering the question, "What is reuse?" or more specifically, "What is

reusable?” All too often, this question is answered by looking at the fine-grained deliverables at the end of the

development lifecycle—namely implemented class libraries. Planning for object reuse early, during the planning

and modeling stages of business development, is critical for realizing economies of scale with courser- grained

design concepts. Developing patterns of the approach for reuse is one way to ensure that the development process

will provide every opportunity, incentive and benefit to reuse common design elements. This is especially true for

large and complex applications. Thus, the question of "what is reusable?" should not be limited to physical

implementations of objects. Reuse of higher-level abstractions, such as best-practice models and design artifacts

created early in the development life cycle, can offer immediate business value. KADS Object patterns, by nature,

are designed for effective reuse.

Levels of abstraction and reuse

Patterns, as well as object models, can be developed at any level of abstraction. Therefore reuse of these models

can be realized along a continuum, from course to fine granularity as illustrated in Figure 7.1.

Different kinds of business knowledge along this continuum form opportunities for knowledge modeling, and in

turn for object reuse. Reuse that occurs at the course-grained end of the continuum achieves wider impact and

potentially greater leverage to the enterprise.

In order to effectively reuse business concepts, they must be modeled using a formalized approach and notation

such as the KADS Object patterns, capturing the essential business information, processes, concepts, rules and

assumptions upon which process and system implementations may be based. Reuse of patterns prior to

implementation design not only saves resources, it can also leverage the use of "best practices" as reflected in the

models.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 97 A Global Text

http://creativecommons.org/licenses/by/3.0/

7. Best-practice reuse

Figure 7.1: Reuse continuum.

Unfortunately, the usual approach to reuse has been to wait until an object has been "implemented" (e.g.

captured in system application code), and then to think about its reuse. Objects at this end of the continuum are

generally so specific as to be limited in reapplication. Addressing reuse only at the application and code levels tends

to limit reuse to its smallest possible scope.

Business case for a pattern approach to reuse

Greater economies of scale are realized by planning for effective reuse at higher levels of abstraction, and

ensuring preservation of architecture throughout all reusable concept, design and implementation elements.

Patterns are one of the few approaches that achieves preservation of architecture, and thus enabling effective reuse.

Parallels may be drawn between deliverables (reuse candidates) in the OO development life cycle, and their

corresponding level of abstraction. Table 7.1 shows the major activities of the OO development life cycle, along with

corresponding reuse candidates for each activity. Reuse candidates, in most cases, are nothing more than standard

deliverables that are properly archived and retrievable for reuse.

KADS patterns can be used effectively for each life cycle activity in Table 7.1 to model the activity and capture it

in standard format for reuse. For example, the technical architecture and infrastructure can be modeled using

KADS and design patterns, thereby abstracting it for reuse, as discussed in the chapter “Best practice: technical

architecture”. Creating an abstract cognitive pattern model that reuses concepts from high-level strategy through

technical architecture supports the principle of preservation of architecture by leveraging the reuse of lower-level

objects that are "compiled" in or implied by the abstract models.

When all life cycle activities are modeled, not only is the entire OO development process more consistent and

coherent, but the design artifacts of all layers are standardized and can be offered as reusable components.

Table 7.1: Life cycle reuse candidates.

Life cycle activities Reuse candidates

Strategic business planning, domain modeling Strategic plans, business metamodels, business

concepts, program/project structures, methodologies

Business process analysis and design, object

modeling

Master business cycle models, industry business

metamodels, industry 'best practice' domain models,

98

This book is licensed under a Creative Commons Attribution 3.0 License

process models, object models

Application object modeling, OO analysis and design Application class libraries, application frameworks,

patterns, use cases, scripts (workflow, test)

OO application implementation Implementation class libraries, components, objects,

methods, code

OO technical architecture Technical architecture, technical models/drawings,

infrastructure documentation, patterns

Object-model reuse environments and repositories

The key to reusing object models is making them available and accessible to the user community, though an

environment such as an object repository, object library or object-enabled network environments. Creating

environments for persistent object-model reuse offers many alternatives. However, none of the choices today could

be considered entirely satisfactory. In an ideal world, reusable objects would be accessible from interpretable

distributed repositories using concept browsers with open, extensible search functions. Today's commercial object

repositories are moving in this direction (by using common underlying Object Database(ODB) systems, and

common IDL specifications such as Common Object Request Broker Architecture (CORBA) 2.0 and Object Linking

and Embedding (OLE)). However, the widespread use of true interoperable OO environments is not yet a reality,

both from a cultural and technological perspective.

When evaluating Computer-Aided Software Engineering (CASE) tools, Object Databases and other persistent

object stores, it is important to ask questions regarding facilitation of reuse (i.e. consistency checking). Our

experience has shown that there are variations from tool to tool in terms of their ability to enable work-group

consistency and reuse.

Pattern repositories

Ideally, repositories for patterns will work the same way as for objects: widely distributed and accessible across

heterogeneous environments. Distributed-knowledge repositories will also facilitate the ability to secure and

manage knowledge assets. Today, however, we are limited to two basic strategies.

The first strategy is to leverage the persistent storage provided by tools that specifically support KADS

development, such as the CommonKADS workbench and OpenKADS (Groupe Bull). These tools were designed to

support storage, retrieval, cross-referencing and manipulation of the KADS patterns. The downside to some of

these tools is that they generate proprietary formats, are limited to unit-based platforms only, and tend to be rather

costly.

The second strategy involves using common off-the-shelf drawing tools and databases, and creating pointers to

the models from a repository, or storing models as "blobs" within an object database product (ODB), with a built-in

browsing capability. We have found this strategy to be more than adequate for projects we have undertaken. The

repository for patterns should include:

• a description of the function of the pattern;

• the model use across industry/function/application, etc.;

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 99 A Global Text

http://creativecommons.org/licenses/by/3.0/

7. Best-practice reuse

• file/tool/location pointers;

• format, tool (and version) used;

• version tracking, and authoring information;

• status of testing and QA information;

• ability to nest design patterns within higher level KADS patterns.

Even with this simple reuse-repository strategy, many issues remain unresolved: security/authorization

regarding patterns and sets of patterns; searching for functionality (limited to manually inserted keys);

synchronization of access/update; versioning and QA assurance; status reporting of pattern use; and management

of pattern life cycle to name but a few.

For more information on these subjects and on repository issues consult the references cited at the end of this

chapter.

Best-practice pattern: reuse

The scope of reuse planning can be understood through the use of patterns. Modeling the aspects of reuse at the

highest level (e.g. enterprise) creates a template for reuse that can then introduce the concepts of reuse throughout

the organization in a consistent manner.

Figure 7.2 is a top-level pattern that captures a best practice for model reuse. Four high-level subpatterns are

modeled; pattern descriptions for each are provided. A high-level concept description for the metapattern is

provided. The remainder of the chapters follows the format of the previous chapters.

Figure 7.2: Reuse metamodel.

Reuse metamodel: pattern description

• Plan for reuse in the organization, using reuse incentives, standards and business drivers as components

for inclusion in a reuse plan.

100

This book is licensed under a Creative Commons Attribution 3.0 License

• Design a reuse model, based on the reuse plan, incorporating standard development practices for technical

architecture and application design, specific reuse procedures and reuse staff roles/responsibilities and

assignments.

• Implement reuse model, incorporating the technical infrastructure required to support reuse, and bringing

the model and initial reuse libraries online. Populate repository with reusable assets.

• Manage the repository and reuse model by maintaining management procedures (such as versioning

control and security access and measuring and rewarding reuse), resulting in archived assets and a

managed reuse model.

Reuse metamodel: concept description (with examples)

Concept name Definition

Possible sources and

format Example

Business drivers Business concepts/tools

that would benefit from

effective reuse.

Documented and non-

documented (anecdotal)

requirement.

"We seem to have a lot

of redundancy in our

business when it comes to

writing proposals. We

could benefit by enabling

effective storage/retrieval

and reuse of proposal

templates. . ."

Reuse standards Organizationally

mandated standards for

reuse.

Standards, procedures,

policies.

"All company press

releases must contain the

following language and

format. . ."

Reuse incentives Policies that encourage

creative reuse, as opposed to

"NIH syndrome."

Published company policy. "For each

modification/reuse of a

preexisting C++ class

from the corporate

repository, effectively

reused in a new and

unique application, the

programmer/ analyst will

receive 10 additional

points toward the bonus

plan. . ."

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 101 A Global Text

http://creativecommons.org/licenses/by/3.0/

7. Best-practice reuse

Reuse metamodel: concept description (with examples)

Concept name Definition

Possible sources and

format Example

Reuse model

(composed-of)

• Reuse plan

• Technical

architecture

model

• Reuse role/

responsibility

assignments

• Reuse

procedures

A detailed action plan

that addresses new roles,

procedures and policies to

support the goals and

objectives outlined in the

reuse plan.

Document. "Our reuse model is

comprehensive in

addressing the tactical

methods for achieving

our reuse objectives over

the next three years ..."

Reuse procedures Procedures for reusing

shared components, as well

as making available newly

developed or reconfigured

components.

Document, part of reuse

model.

"The DBA and object

librarian shall coordinate

check-in/check-out

routines from the shared

repository, as well as

administer the security

access authorization

codes . . ."

Technical

infrastructure

Component of technical

architecture pertaining to

the physical underpinnings

of the computing

environment: networks,

servers, databases, routers,

mainframes, etc.

Physical environment. "Our infrastructure

will allow us to partition 5

GB on the development

server for the new reuse

libraries, and provide

open access to the data

warehouse via the

network backbone for

browsing . . ."

Reuse metamodel: concept description (with examples)

Concept name Definition

Possible sources and

format Example

Reuse libraries A subset (part-of) Object code. C++ class libraries

102

This book is licensed under a Creative Commons Attribution 3.0 License

Reuse repository

(state-of)

• populated

• tested

• managed

reusable assets.

A repository (database)

that maintains storage of

reusable concepts/tools,

including design/analysis

artifacts, code segments,

documents, images, etc.

Database (object-oriented

or capable of storing diverse

data types).

"Our reuse repository

is implemented with an

object-oriented database,

and is being populated

with multiple data types—

which will be important

in realizing our reuse

goals. Query and retrieval

of data appears to be

much faster traversing an

object hierarchy . . ."

Reusable assets Any element that has the

potential of ongoing value

to an organization through

reuse.

Patterns (KADS and

design), documents,

architectures, frameworks,

code, intellectual property,

designs.

"Any substantive

deliverable to the

business, be it a proposal,

a design prototype, or a

new estimating algorithm,

has reuse potential and

should treated as a

reusable asset. . ."

Managed reuse

repository

Reuse repository that is

implemented, populated

and maintained according

to rules and criteria,

including reuse tracking

and archiving/purging of

assets.

Database (object-oriented

or capable of storing diverse

data types).

"We are tracking an

average of 27 instances of

pattern reuse on a daily

basis, and monitoring the

controls for reuse

incentive/ rewards..."

Reuse metamodel: concept description (with examples)

Concept name Definition

Possible sources and

format Example

Purged archived assets Assets that have been

purged from the active

repository for reasons

relating to obsolescence

or replacement by new

assets.

Patterns, documents,

architectures, frameworks,

code, intellectual property,

designs.

"Our documents and

designs relating to

breadboard design have

been purged from the

active reuse repository, as

we are no longer in that

business line and have

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 103 A Global Text

http://creativecommons.org/licenses/by/3.0/

7. Best-practice reuse

sold off all relevant assets

pertaining to breadboard

design to VChips, Inc. . . ."

Managed reuse model The reuse model, in

practice, as a living

document.

Document. "Several significant

tactical adjustments have

been necessitated in the

Reuse Model over the

past month,

including . . ."

Management

Procedures

Standard operating

management

procedures.

Management documents,

meetings.

"Any expenditures

over 5,000 USD must be

pre-approved by the Chief

Financial Officer (CFO),

except under

circumstances where . . ."

Figure 7.3: Subprocess 1.0: plan for reuse.

Subpattern 1.0 (plan for reuse) pattern description

Subpattern 1.1: Identify goals and objectives for planning effort, based on the business drivers and previously

agreed upon reuse standards, reuse incentives, and reuse training goals and objectives.

104

This book is licensed under a Creative Commons Attribution 3.0 License

Subpattern 1.2: Develop plan of action based on goals and objectives, existing assets available for reuse, and

project-specific reuse objectives.

Subpattern 1.3: Compose the reuse plan, incorporating the plan of action and roles and responsibilities.

Figure 7.4: Subprocess 2.0: design reuse model.

Subpattern 2.0 (design for reuse) pattern description

Subpattern 2.1: Create the preliminary reuse model, based on reuse plan, the existing and planned technical-

architecture design model, application specification(s), and the technical-architecture, model and application

standard-development practices.

Subpattern 2.2: Compose the reuse implementation model, using the preliminary reuse model and

incorporating reuse procedures and reuse role and responsibility assignments.

Subpattern 3.0 (implement reuse) pattern description

Subpattern 3.1: Implement reuse repository, based on the reuse implementation model and the technical

infrastructure (e.g. software/hardware) required to support the reuse activities.

Subpattern 3.2: Populate the reuse repository with reuse assets and applicable reuse libraries.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 105 A Global Text

http://creativecommons.org/licenses/by/3.0/

7. Best-practice reuse

Figure 7.5: Subprocess 3.0: implement reuse plan.

Subpattern 4.0 (manage reuse) pattern description

Subpattern 4.1: Generalize/test the repository assets.

Subpattern 4.2: Maintain the tested assets using management procedures (e.g. QA and maintenance rules) as

defined in the plan and procedures.

Subpattern 4.3: Track reuse of the repository assets, and maintain metrics for determining long-term

business value of assets and reward incentives.

Subpattern 4.4: Archive/purge the repository asset as necessary.

Figure 7.6: Subprocess 4.0: manage reuse.

106

This book is licensed under a Creative Commons Attribution 3.0 License

Summary

The promise of object technology and patterns—component-based reassembling of reusable components—can

only be achieved through reuse, and reuse can only be achieved through careful planning. The process of reusing

patterns and objects is that of packaging knowledge as objects patterns, making them visible and accessible for

reuse, and folding improved, used objects and patterns back into the whole process. The rewards of reuse can be

phenomenal. However, these rewards build over time, following the volume of high-quality reusable

objects/patterns available from a repository, library, or through a networked environment.

References

Anderson, J. A. (Aug. 1990). Technology Insertion: Establishing an Object-Oriented Life-Cycle

Methodology. Selected Papers on Object-Oriented Technology, CSC Technology Report 90-1.

Gamma, E., R. Helm, R. Johnson & J. Vlissides (1995). Design Patterns: Elements of Reusable Object-

Oriented Software. Reading, MA: Addison-Wesley.

Griss, M. & W. Tracz, eds. (April 1993). WISR92:5th Annual Workshop on Software Reuse Working Group

Reports, Software Engineering Notes, 18 (2), ACM Sigsoft.

Hartman, M., F. W. Jewell, C. Scott & D. Thornton (1994). Taking an Object-Oriented Methodology into the

Real World. Papers. AMA OOPSLA.

Margones, Yohan, et. al. (29 April 1994). Volume 1: Guidebook for Building Cost-Effective Systems, Version

1.0. CSC Consulting White Paper.

Martin, J. & J. Odell (1995). Object-Oriented Methods: A Foundation. Englewood Cliffs, NJ: Prentice-Hall.

McGregor, J. D. & D. A. Sykes (1992). Object-Oriented Software Development: Engineering Software for

Reuse. New York: Van Nostrand Reinhold.

Objectory Corporation (Nov. 1994). Reuse Strategies and Cross Project Team Development. Objectory

Corporation Brochure.

Rotella, P. (1994). Managing an Object-Oriented Project Using an Interactive Approach. AMA OOPSLA.

Tansley, D. & C. C. Hayball (1995). Knowledge-Based Systems Analysis and Design: A KADS Developer's

Handbook. Englewood Cliffs, NJ: Prentice-Hall.

Vitalari, Nick (Chairman) & CSC Research and Advisory Services (Oct. 1994). Object-Engineering Action

Group Notes. CSC Summit.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 107 A Global Text

http://creativecommons.org/licenses/by/3.0/

This book is licensed under a Creative Commons Attribution 3.0 License

8. Best practice: testing OO
systems

Purpose

The purpose of this chapter is to illustrate the use of knowledge acquisition and design structure (KADS)

patterns as a way to describe best-practice testing planning and procedures.

The development of moderate and large-scale distributed object-oriented (OO) systems involves the cooperative

interaction of numerous individuals including: project managers, subject matter experts, domain modelers,

database designers, implementors and testers. Such systems are usually characterized by complex domains,

changing sets of requirements, constrained dates for deliverables, hardware/software incompatibilities or other

difficulties. Important to our understanding of building such systems is the role that testing plays.

It is surprising that the development of testing strategies and methods for OO systems is quite recent and

somewhat untried, given that object technology itself is now twenty years old. Some organizations that have

successfully used more traditional forms of testing may find these traditional approaches inadequate for OO

software-development efforts. The principle reason for this is that OO systems are inherently different and thus

insert additional levels of complexity into the development process.

In part, the complexity is due to the nature of OO systems. The object modeling and programming paradigm is

sometimes unfamiliar to both managers and their in-house development staff, requiring a shift in how systems are

designed and constructed. Object-oriented programming concepts such as inheritance and polymorphism challenge

testers to come up with more innovative methods for evaluating the functionality of these systems. Moreover, the

creation of reusable software components, an advantage espoused by purveyors of the OO paradigm, is only

achieved by validating and verifying the correctness of the design and testing the system's constituent parts.

Complexity increases significantly in the testing of hybrid systems, which incorporate one or more legacy

applications "wrapped" by objects.

There is no doubt that software testing is a valuable activity. In fact, untested or ill-tested software often leads to

postponed release dates or errors unacceptable to the end-user. Even when testing occurs later in the life cycle it

has been known to consume 40 per cent or more of the initial software-development budget. Where budgets and

time frames are constrained, testing activities are frequently reduced to such an extent that the reliability of the

software is questionable. Poor or inadequate testing is one predictor of software failure.

Many organizations practice some kind of software testing. A few have instituted enterprise-wide testing

strategies, while others have organized and carried out testing on a project-to-project basis. Without a doubt, some

organizations would prefer not to do any testing at all and view it as a costly nuisance. Certainly, a good testing

program is an investment in people, training and tools. It requires changes in the attitudes of management and staff

toward software testing. It also requires commitment. The seemingly excessive costs that managers may first

experience are more than negated by improved software quality and testing efficiency.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 108 A Global Text

http://creativecommons.org/licenses/by/3.0/

8. Best practice: testing OO systems

The motivation for developing a pattern-based approach for testing is threefold. First, we are interested in better

understanding the testing process, as there are significant differences between OO and non-OO system testing.

Second, we wish to identify a set of "best practices" for testing. Third, we want to map the testing process to the

development life cycle. It is our contention that a continuous, iterative testing effort—started during the early stages

of development—will help developers build reliable OO systems in a timely, cost-effective manner.

Definition

Testing is the process by which software is formally and systematically probed for the presence of errors. This is

a simple definition, yet much is implied. The term “process” means that there is an established set of procedures

that are followed to achieve some end goal. The term “formally” connotes that the procedures have structure, either

some aspects take place before others or they are performed in parallel. “Systematically” suggests that a strategy

exists for “probing”, or examining, the software. Errors are mistakes that result in coding faults, which in turn lead

to software failures. Users of software notice failures. Testers attempt to identify the errors that lead to failures

before the software is released.

Most errors found in software are introduced early in a project, particularly during the requirements phase.

Some studies indicate that more than 50 per cent of all errors are entered at this time. Since finding and correcting

such errors are always more expensive during the latter portions of the development cycle, it behooves all project

participants to identify and correct them at a much earlier stage. For these reasons, testing must be well managed

and fully integrated into the entire development effort.

The approach toward testing is also affected by the development strategy. Several life-cycle approaches are

currently used by developers. While some seem more popular than others, they include the sequential and iterative-

waterfall models, the spiral-development model, and the iterative/incremental model. Also included is rapid

application development (RAD) and other variations, such as rapid evolutionary development and rapid

prototyping. These latter methods, as their names imply, emphasize speedy software development.

Within the confines of these development structures are limitations on how a test team approaches the problem

of testing software. For example, the sequential-waterfall model has testing taking place as the final activity. RAD,

on the other hand, requires that most testing be conducted by the end-user, not by an independent test group.

Spiral and iterative or incremental models revisit testing at iterative stages as more functionality is built into the

system.

One last need is to clarify the concepts of testing software and debugging software. They are not at all the same.

The discovery of errors is the principle purpose of testing. The root cause of the error is not the goal, only the fact

that an error exists. Debugging is more concerned with finding and fixing the causes of the errors that testing

uncovers.

The business case for a pattern approach to testing

A pattern approach has proven to be quite useful in developing testing strategies for OO systems. Developing OO

software-testing frameworks based on patterns offers the following benefits:

• A more complete understanding of the testing process: A pattern approach provides a better

understanding of the testing process as a whole by articulating in a more precise fashion what kinds of

testing concepts and operations are relevant. One possible benefit is that the testing process may be

109

This book is licensed under a Creative Commons Attribution 3.0 License

streamlined by first examining and then modifying, if relevant, the relationships and interactions between

the various testing activities.

• A better match between the testing structure and business goals: A pattern approach permits the

development of a testing structure that more suitably matches the business. For example, an organization

may contract out a portion of a software-development effort with the intention of expediting its completion

and/or reducing costs. It is not uncommon in these instances for an existing testing structure to be out of

sync with changing management objectives. A pattern approach can help to identify what aspects of testing

are influenced by these changes and how the changes would affect overall software quality.

• A more appropriate way of matching software design and functionality with specific OO test procedures:

Patterns deliver a more precise mapping of static and dynamic test procedures to those structural and

behavioral characteristics of the software under test. The use of patterns leads to the development of test

cases and tests scripts that exercise the targeted functionality and dependencies of classes and objects more

rigorously. As a consequence, unnecessary or redundant tests may be omitted altogether.

• A better approach for designing and selecting test cases for exercising systems: A pattern approach allows

testers to judiciously design and choose a set of test cases used to exercise various components of the

system. For example, complex transactions that access several databases and/or spawn other subprocesses

are both difficult to understand and test. Patterns permit a better comprehension of the transaction and

thus lead to the construction and use of more suitable test cases.

• An improved method for matching test tools and metrics with testing needs: Finally, patterns help testers

identify which test tools and metrics are most appropriate for their testing environment. There is a better

understanding of why, for example, complexity metrics designed for non-OO code are inadequate for OO

software. Such findings eliminate the need for certain types of testing tools.

Software testing: traditional vs pattern approach

Software testing, like software development in general, is a maturing discipline. Good testing procedures of a

decade ago are now inadequate for the kinds of software systems constructed today. More traditional testing

practices worked well when systems were rather simple and mainframes were the standard fare. Then, testing was

generally carried out by developers, not specialists, who would compile, run and test individual software

components or other software structures. The units, when completed, would be assembled or integrated together,

usually one component at a time. More tests were carried out to insure that these assemblies worked properly.

When all the components were compiled, the complete system would be tested in whole. For obvious reasons, the

testing of these components and assemblies was commonly referred to as unit testing, integration testing and

system testing.

Software units are generally considered to be the smallest possible piece of software that can be tested in an

independent manner. Some distinguishing characteristics of units are that they exist in separate files, they are

compiled separately and in isolation, and they are typically small, consisting of less than a few hundred lines of

code. In non-OO implementations, units are referred to as "modules" or "procedures". White-box, black-box and

gray-box tests are suitable at this level. If interfaces exist, they are typically removed.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 110 A Global Text

http://creativecommons.org/licenses/by/3.0/

8. Best practice: testing OO systems

Integration testing focuses on discovering errors and inconsistencies when units are brought together and

recompiled. The point of doing this, of course, is to examine interfaces between other internal units or external

components, such as other systems, databases, and input and output devices.

System testing examines the entire product for errors and deficiencies. Some test scripts can be exercised again

to evaluate the total functioning of the system. New test scripts are designed and executed as well to evaluate the

behavior of other system characteristics. System testing is mostly black-box.

The pattern approach differs from more traditional approaches for testing software because, in part, it is model

based. Models are structures that aid human understanding. There are many kinds of models, ranging from simple

drawings and graphs to explicit mathematical constructs. Common to each is the attempt by modelers to simplify

seemingly complex representations. KADS Object, when viewed from this perspective, is a modeling technique that

renders a cognitive representation of the patterns found in testing processes.

The pattern approach is also distinguished from more traditional testing approaches by exploring the "what",

not the "how", of testing. How software is tested is important, but it is an implementation issue and varies from

organization to organization, or even from project to project. The "what" allows testers to focus on elements or

concepts that comprise good testing practices.

Thus a pattern approach leads to a tighter mapping of testing to the software-development life cycle. It also

permits individuals who are designing or redesigning testing procedures to more readily identify and include

business objectives into the process. Furthermore, a pattern perspective is a more natural fit for object-oriented

software designs and is a better mechanism for constructing static and dynamic tests of distributed OO systems.

The differences between traditional testing approaches and the KADS approach are shown in table 8.1.

Table 8.1: Traditional testing approach vs KADS

Traditional approach KADS approach

non-model based model based

focus on the "how" of testing focus on the "what" of testing

mapping of testing to software development life cycle

not clearly articulated

mapping of testing to software development life

cycle clearly articulated

business objectives which influence testing not

apparent

business objectives which influence testing

identified

emphasis of testing software modules or procedures emphasis on testing software objects that

participate in specific patterns

Best-practice pattern: software testing

Testing consists of several related processes, which are listed below. At first glance, the listing may imply that

the processes are carried out in order. This is not the case. While it is true that having a test team in place must

occur before any other activity, in practice, many of the processes are conducted in parallel:

• organizing the high-level strategy;

• selecting appropriate test tools;

111

This book is licensed under a Creative Commons Attribution 3.0 License

• developing iterative tests;

• developing test plans;

• constructing test cases and scripts;

• exercising the tests;

• collecting and analyzing test results;

• reporting the results.

Software testing metamodel

The software testing metapattern is presented Figure 8.1, followed by its pattern description and concept

description. Two subpatterns (6.0 and 7.0) are then further detailed.

Software testing metamodel: pattern description

Pattern 1.0: Organize the high-level strategy.

In an iterative, incremental development environment, organizing a high-level strategy is critical for the

successful implementation of any testing program. The enterprise testing policy provides general guidelines and

defines expectations for software testing within the organization. Management objectives influence the manner and

degree to which testing activities are undertaken. Test-team members are also identified at this time. The result is

the development of a high-level strategy that describes aspects of testing such as staffing and schedules.

Figure 8.1: Testing metapattern.

Among the different organizational activities described in a high-level strategy, forming a test team is extremely

important. Organizing a test team means that the required expertise for a given project fits the skill set of selected

test-team members. The test team is thus composed of individuals who are categorized into four roles: team lead,

subject matter experts (SMEs), testers, and, on occasion, test advocates. The size of the test team is dependent upon

the size of the project and the collective skill set of individual test-team members.

The basic role of the test-team lead is to guide the overall testing effort. This individual has previous experience

in software testing. The test leader's responsibility includes delegating work to other team members, developing

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 112 A Global Text

http://creativecommons.org/licenses/by/3.0/

8. Best practice: testing OO systems

and updating test plans and participating in project meetings. The team leader should provide information to

project management.

An equally important role is that of the SME who has intimate knowledge about the business domain. SMEs

typically are the source of information for designers and modelers. Large OO projects work with several SMEs, so it

is not unexpected that more than one SME may be required to assist on a test team. The primary function of SMEs

on a test team is to help design and create test scenarios and test cases. They ensure that business rules are

correctly implemented, correct events are fired and proper data are returned.

In sheer numbers, testers comprise the largest segment of the testing staff. Testers have many responsibilities

and have been trained in the use of specific test tools. If specialized test programs are required, the testers are the

ones most likely to develop the code.

In some situations, testing advocates, because of their specialized knowledge and experience, may be helpful for

limited periods of time. Depending on how development teams are structured and before testing begins, it would be

valuable to identify personnel who can act in the capacity of testing advocate. The testing advocate is a member of a

subsystem development team who works closely with the test team to evaluate the performance and operation of

the system in question. The advocate can:

• act as a point-of-contact between the subsystem development team and the test team;

• identify, describe and provide specific examples of data required as input values for the subsystem;

• provide a full description of the interfaces required for the subsystem;

• review unit and integration test plans for the subsystem;

• build, where necessary, custom code to capture and store the origin and destination of messages passed

between objects in order to more quickly identify the source of a particular fault or error;

• act as a resource for the test team when determining the boundary conditions of the test cases at the system

test level.

Pattern 2.0: Select test tools to automate the testing process.

This operation is guided by the high-level testing strategy and is critical for successful software testing. Choices

for testing tools depend upon the availability of the tool for a particular software-development environment, its

cost, and any previous experience testers might have had with it.

Many automated tools are now available that support software testing. The fact that these tools are automated

does not imply their ease of use. Nevertheless, a commitment by management to properly train users is required as

the tools can provide significant gains in the time needed to adequately test software. Testing tools are available for

most of the common operating systems and platforms.

Tools for object-oriented system development can be divided into several categories. They include stand alone

testing tools like the McCabe Object-Oriented Tool or OO-Metric, which provides measurements for the

structural attributes of object-oriented code; Purify, which is used to detect memory leaks; and X-Simultest, a

GUI test tool. Some products, such as OMT, provide built-in testing features (automated script generation for code

coverage; OO metrics) into their environments. Others, like Centerline's TestCenter, incorporate several tools

under a single license for measuring compile and run-time performances and providing debugging capabilities. A

few tools directly support programmers while others are intended for use by members of a test team. Although not

113

This book is licensed under a Creative Commons Attribution 3.0 License

strictly limited to OO development, PureDTTs or Defect Control System are important tools for reporting and

tracking software defects.

Pattern 3.0: Develop iterative tests for the testing activity.

Iterative testing refers to tests carried out at different stages of the software-development life cycle. For example,

in an iterative test environment, testing takes place during phases of requirement gathering, design and modeling,

and coding. Further tests are conducted when the components of the software are integrated into larger

assemblages or into the final system. In iterative/incremental development, some of these stages are revisited,

necessitating strategies for conducting regression testing. Iterative testing is influenced by the goals and objectives

of the high-level strategy

Iterative testing begins with the pattern models of KADS Object. These patterns consist of concepts, concept

hierarchies, problem-solving templates and pattern descriptions. Concepts in isolation are not testable in the usual

sense. They are either deemed important, as in core business concepts, or unimportant, where they may be

discarded in subsequent analyses.

Concepts are testable only from the perspective of their relationship with each other. Concept hierarchies, for

example, represent this relationship. Like code walk-throughs, a designer may chose to participate in concept walk-

throughs where relationships like "is-a", "attribute" and "composed-of" are checked. In addition, the concepts in the

hierarchies can be shown to be necessary (or not) by their participation in a specific "operation".

KADS Object templates are testable in two ways. First, the diagrams are testable in the sense that one needs to

show that only necessary and sufficient conditions hold for the diagram to be accurate. Necessity implies that a

condition must be met. Sufficiency means that only certain conditions are required, not any more. For example, it

can be demonstrated that for a given output from a particular operation, only specific inputs are necessary. Second,

KADS patterns are also tested by requiring SMEs to examine each in detail. This makes sense as the SMEs are the

primary source from which the patterns were derived. Patterns should be checked for correctness, completeness

and consistency. Logical walkthroughs of the patterns using test data (concept examples or instances) with the

SMEs is a simple yet highly effective means of testing the model.

As shown in previous chapters, the mapping of KADS models to OO models is tightly bound (e.g. concept

hierarchies to objects, relationships between objects, and object attributes). Scenarios can be developed and then

run to validate the object representation for SMEs and other domain experts. Case tools like LiveModel from

IntelliCorp, Inc. automate this kind of effort. Once the models are validated at this level, implementation can be

initiated. As code is created, more formalized testing procedures are followed.

Concepts, hierarchies and KADS diagrams, if constructed properly, represent user requirements and

specifications. Since many errors are introduced during requirements gathering, it behooves testers and users alike

to closely examine the KADS patterns and subsequent use cases and OO representations before coding activities

take place.

Many modeling tools generate code, primarily C++. Testing at this level becomes more specific. It includes static

and dynamic tests performed at the time of unit, integration, and system-testing phases. Static tests are usually

undertaken with the help of testing tools. Dynamic tests sometimes require the development of specialized objects

called monitors, which capture run-time behavioral aspects of the system. Static and dynamic tests are discussed

later in this chapter.

Pattern 4.0: Develop the test plan.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 114 A Global Text

http://creativecommons.org/licenses/by/3.0/

8. Best practice: testing OO systems

The test plan is a formal statement about the goals and procedures for conducting software tests. The plan is

influenced by the goals and objectives of the system under development and the iterative test strategy. In some

organizations, the test plan is limited in design and scope. For others, the plan is quite elaborate. The test plan may

vary in focus as well, with a single general plan outlining the major testing objectives of the project and more

specific plans for other testing activities, such as integration testing. General test plans should address the project's

software development environment, hardware requirements and testing standards. Personnel, schedules and tools

are usually described at this level.

It is sometimes advantageous to develop more specific test plans for each development iteration. The objectives

of these plans should be clearly defined and should include a list of the test cases that will exercise the desired

behavior of the system. They should also identify and describe the sets of process and product metrics applicable for

the system under test.

Process metrics are those that relate to the way in which an organization develops software. Process metrics

might track the kinds and frequency of software errors or the severity level of the error. Process metrics are beyond

the scope of this discussion (although they appear in Figure 8.3 as QA Metrics). Nevertheless, several references are

cited in the bibliography, should the reader have interest in this area (Beizer, 1994; Hetzel, 1993; Shepperd, 1993).

It is sufficient to state that measuring process will lead to improvements in the quality of the product and the

development environment.

Product metrics help to measure the static (design) and dynamic (behavioral) characteristics of the system. The

focus here, however, is on metrics related to software and more specifically, to OO software. Such software is

described in terms of classes, objects and methods, not procedures, subprograms or functions that have dominated

legacy system development. The difference in nomenclature is significant. One can have several objects operating in

concert that perform a single function or one object that carries out multiple functions. This mindset is not

altogether difficult to understand, but for some organizations the transitioning to an object-oriented way of

thinking is not without its own set of problems.

Static metrics are those that describe design characteristics of the code. Six specific metrics for which sound

mathematical foundations have been established have been identified (Chidamber, 1994), and are recommended

for use by test teams. Note that the categories of metrics differ significantly from that of procedurally-coded

software.

• weighted methods per class: the sum of the number of methods and complexity of methods for a class; used

as a predictor of the time and effort needed to develop and maintain the class.

• depth of inheritance: a measure of the number of ancestor classes that can affect a class; deeper trees

indicate greater design complexity.

• number of children: a measure of the number of subclasses that inherit the methods of the parent; large

numbers of children are indicators of the potential for reuse or suggest the need for greater testing.

• coupling between object classes: a count of the number of couplings of one class with others; excessive

coupling prevents reuse, increases maintenance efforts and requires more rigorous testing.

• response for a class: a count of the set of methods that can be invoked in response to the arrival of a

message to an object of this class; larger counts are indicative of the need for greater testing and debugging.

115

This book is licensed under a Creative Commons Attribution 3.0 License

• lack of cohesion of methods: the count of the number of disjoint method pairs minus similar method pairs

in a class; indicates that a class should be split up into two or more subclasses; cohesiveness promotes

encapsulation.

Other metrics have been suggested as well, but these lack the mathematical rigor of those identified above. Some

of these metrics are listed below. Descriptions are found elsewhere (Lorenz & Kidd, 1994).

• number of message sends;

• number of public instance methods;

• method complexity;

• number of instance variables;

• number of class methods;

• number of class variables;

• multiple inheritance;

• number of methods overridden;

• number of methods inherited;

• class cohesion;

• number of system or class globals;

• class reuse.

"Dynamic metrics" refers to measurements taken at run-time. These metrics are more difficult to capture, often

requiring specialized code that monitors the interaction of objects. Possible run-time measurements might evaluate

the kinds and frequency of messages being sent to and from an object, determine the frequency that certain

operations invoked or examine the changes taking place in the state of a particular object. Most dynamic metrics

collected today are related to system performance.

A class of metrics that would be of immense value are complexity metrics. The concept of complexity metrics is

not new—the Halsted and McCabe complexity metrics are well known. However, they were developed for non-OO

systems and are not sufficient for object-oriented development efforts. The new class of complexity metrics needs to

address the interoperability of objects that function in a distributed environment. Complexity metrics might

address computational or cognitive aspects of the system.

Pattern 5.0: Construct test cases and scripts.

The construction of test cases and scripts is affected by the high-level strategy. Proper testing requires the

construction of test cases that, when executed, exercise the system in specific ways. Test cases are constructed with

requirements in mind and explicitly describe the expected results. Test cases document the execution conditions for

the item under test. They are influenced by the high-level strategy.

Test cases are usually represented in tabular form. As in the more traditional testing approaches, each test case

requires a unique identification. In OO implementations, however, it is necessary to identity the class that is

executed (or if testing interdependencies, the set of classes), its state, and any methods that may be invoked. This

becomes particularly important for core classes such as "Customer" or "Account," which form the foundation for

many business operations. Expected results for the test should be presented.

If applicable, exceptions, interrupts and external conditions should be exercised as well. Comments should be

recorded if necessary.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 116 A Global Text

http://creativecommons.org/licenses/by/3.0/

8. Best practice: testing OO systems

Pattern 6.0: Exercise the tests.

In a broad sense, OO systems are tested in similar fashion to non-OO systems. That is, test plans are created,

appropriate tools are selected to support the automation of testing activities, test scripts are built, selected tests are

performed and results are summarized and disseminated to the developers who then debug the errors and make

changes to the code. If necessary, specialized test drivers can be built by testers to exercise files of input values and

capture resulting discrepancies. The high-level strategy guides the overall testing effort.

The specifics of testing OO systems, however, differ significantly from traditional approaches. For one, the

object state will affect the manner in which test cases are designed and executed. Secondly, encapsulation shifts the

focus of testing from the module or subprogram to the object, which, in turn, directly impacts how much

integration testing is necessary if coding changes are made. Thirdly, inheritance greatly influences the development

of test cases and test scripts.

For example, consider an object called "Customer", which may have the states "New", "Existing" or "Former". A

method, such as "Check-Customer-Credit-Limit" may apply to each of these states. Different test cases may be

required for the method given the state of "Customer". Since "Customer" is encapsulated, it can be tested in

isolation. Nevertheless, several new test cases may be required to fully exercise the interaction between "Customer"

and other objects, such as "Account". If "Customer" inherits a method from its parent, other test cases may be

needed to determine if that inherited method functions as planned.

Pattern 7.0: Collect and analyze the test results.

This operation is affected by the high-level strategy, the test plan, and the exercised tests. The most obvious

reason is that errors discovered during testing must be traceable to particular test cases and scripts and then

analyzed to determine the cause of the error.

Collecting measurements that help guide the design and implementation of the system also are of immense

value. These measurements are numeric representations of the overall software-development process and the

software products that are created by it. Collection of various measurements for collection's sake is not the

objective; rather, the measurements are indicators of the development process and provide guidance to developers

and modelers who are concerned about design and behavioral attributes of individual software components. The

types of process metrics collected by the organization are identified by the high-level strategy.

Pattern 8.0: Report the results.

This operation requires that a reporting strategy be in place when testing reveals errors. Reports should be

prepared at the end of each testing phase and disseminated to project managers and developers as appropriate.

Software testing metamodel: concept description (with examples)

Concept Name Definition Possible Sources

and Formats

Example

Management

objectives

Management objectives

specific to a project and

testing associated with that

project. Management may

express some variance on

the criticality of testing

Documents; written

and verbal expressions.

"This project is viewed as

mission-critical, and must

undergo rigorous testing

throughout development.

Senior management therefore

supports any additional staff

117

This book is licensed under a Creative Commons Attribution 3.0 License

from case to case. or schedule adjustments on

this initiative to ensure

thorough testing..."

Enterprise testing

policy

Organizational policies,

procedures, or documented

objectives pertaining to

testing.

Policy documents. "All software deployed in

our production environment

must undergo, at a minimum,

unit, integration and system

testing and be certified by the

QA department..."

Test team candidates Candidate staff to fill

roles designated for testing.

Role categories include

team lead, subject matter

expert, testers and test

advocates.

Part of test plan. "Test-team candidates

have been identified in the

attached list. Role

assignments will be

designated based on

availability and supervisors'

approval..."

Software testing metamodel: concept description (with examples)

Concept name Definition

Possible sources and

format Example

Iterative test

strategy

Schedule for ongoing

testing, which is carried out

throughout the development

life cycle.

Part of test plan. "Builds and unit testing

for components A-E will

occur twice weekly,

according to the following

schedule..."

High-level strategy High-level view of the

testing process for a project,

based on available resources,

etc. Strategy may be adjusted

iteratively based on test

results. The high-level strategy

guides the overall testing

effort.

Documents, status

reports.

"Unit testing has

proceeded ahead of

schedule for components B

and C. Recommend we

move ahead on integration

testing for those

components..."

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 118 A Global Text

http://creativecommons.org/licenses/by/3.0/

8. Best practice: testing OO systems

Test tools Commercial testing tools. Software. "We are using a set of

commercial tools for testing

various aspects of the

system, including

LoadRunner, Purify and X-

Simultest..."

Software testing metamodel: concept description (with examples)

Concept name Definition

Possible sources and

format Example

Test cases and

scripts

Testing scenarios

recorded as Cases (large-

grained functions) and

Scripts (fine-grained

scenarios that exercise

specific instances and

rules).

Documentation, code, test

data.

"Test script #12 will

test the online balance

inquiry function, for a

retail customer who's

credit card balance has

less than $50 available

credit..."

Test results

(composed-of)

• Actual test results

• differences (from

expected results)

Test results are

recorded after collection

and analysis, comparing

actual results with

expected results.

Documentation, reports. Expected result of

script #12 was a warning

pop-up dialog, indicating

that available credit was

low. Test did not fire the

low credit rule, which in

turn invokes the pop-up

warning. Instead, credit

balances (correct

amounts) were

displayed..."

System goals and

objectives

System goals and

objectives incorporated

into the development of

the test plan, to ensure

everything works and

performs according to

specification, and meets

the original intent.

Documentation. "The system should

allow 7X24 access, and

should be able to process

up to 300 simultaneous

inquiries with under 7

seconds of response

time...”

119

This book is licensed under a Creative Commons Attribution 3.0 License

Software testing metamodel: concept description (with examples)

Concept name Definition

Possible sources and

format Example

Exercised tests

(invoked-by)

• test script

• test tool

• test driver

Test cases and scripts

that have been run, and

whose results are being

analyzed.

Documentation, code,

test data.

"All test scripts within test

case #6 have been run in the

a.m. batch cycles, and are

available for analysis..."

Reported results Test results that have

been analyzed and

distilled into meaningful

reports.

Reports. "Testing of online functions

currently does not meet

performance goals. Although the

system functionality and

business logic is testing through

cleanly, simulated transactions

that exceed 240 simultaneous

have response times in the 10-12

second range..."

Test plan The document which

identifies and guides all

testing activities for a

project, including

schedules, tests, tools,

personnel, etc.

Document. "Our test plan document

includes the following major

sections in Table of Contents:

General Testing Guidelines

Specific Testing Guidelines

Testing Metrics

Testing Tools

Certification

Recommendations

The testing metamodel indicates two operations that are drilled down in greater detail: Exercise and Collect

and Analyze. The first operation, Exercise the test, is shown as a KADS subpattern in Figure 8.2. The second

operation, Collect and Analyze the test results, is depicted in Figure 8.3 as a subpattern.

Subpattern 6.0: (exercise the test) pattern description

• Select tests that are appropriate given the test plan and available test cases and test scripts.

• Select from the set of available test tools those that will meet the objectives of the tests as described in the

test plan.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 120 A Global Text

http://creativecommons.org/licenses/by/3.0/

8. Best practice: testing OO systems

• Match the selected tests to the appropriate test tool.

• Run the tests, using any necessary test drivers (programs or scripts developed to automatically supply input

values to the class or classes under test).

Figure 8.2. Subpattern 6.0: exercise tests.

Subpattern 7.0: (collect and analyze test results) pattern description

The pattern description is as follows:

• Collect test results and quality assurance metrics from the set of exercised tests described in the test plan.

The test results and QA metrics should be stored in a repository for later retrieval and analysis.

• Analyze the QA metrics using standard analytical techniques, such as summary statistics, graphs, and

charts.

• Compare the actual test results with the expected results in order to identify any differences.

• Classify the difference of the test results based on classification criteria, such as error type or error severity.

121

This book is licensed under a Creative Commons Attribution 3.0 License

Figure 8.3: Subprocess 7.0: collect and analyze test results.

Summary

Before any testing of implemented code is undertaken, the test team should have in place entrance and exit

criteria by which they are willing to accept models and code for test or release it for the next development iteration.

For example, testers should have assurances from developers that the units (objects) are free of memory leaks and

that boundary conditions have been thoroughly exercised before integration testing begins. Exit criteria for

integration testing might include external interface functionality tests, for example.

The establishment of a metrics database would also help the test team. A metrics database would allow test-

team members quick access to measurements collected during various phases of testing. Some automated test tools

support this functionality, but full analytical capability is not always available.

Testing is also related to other kinds of activities that fall under the rubric of performance engineering. These

types of tests are undertaken whether or not the desired system is an object-oriented system or a more traditional

variant. They include:

• Performance tests: designed to show how well performance requirements are met.

• Timing tests: result in a collection of measurements that evaluate the flow of transactions across the required

system components in an effort to identify bottlenecks.

• Stress tests: generally designed to place high transaction loads on a system in order to saturate system

resources to a point where they fail.

• Platform tests: conducted to evaluate required system administrative functions such as equipment setup,

kernel configuration, hardware and software upgrading, logging, and report generation.

Each of these kinds of tests are usually undertaken by a group outside the development environment and will

not be described here.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 122 A Global Text

http://creativecommons.org/licenses/by/3.0/

8. Best practice: testing OO systems

The patterns presented here are a reflection of our view of testing as it applies to object-oriented system

development. Ideally, testing is a continuous activity conducted to provide an organization with methods for

developing working, user-accepted systems, and providing a means for generating classes of reusable software

components. The models were developed with this in mind.

The following are general steps recommended to establish an adequate testing protocol.

• At project initiation, designate a test lead. This individual can be selected from the client organization or

may be brought in as a consultant. The test lead should have practical experience in organizing and

conducting a testing program for large-scale systems.

• Staff the test team with individuals who have practical knowledge of OO system development, not simply

coders who have programmed in C++.

• Establish roles and responsibilities for developers and testing team. For example, as developers have

intimate knowledge of their own code, on some projects it would be appropriate that they be responsible for

all unit testing. The test team should provide guidelines in these cases for designing test scripts, suggesting

coverage and path test options, developing exit criteria for the unit tested code and the like. Depending on

the extent to which design patterns are used, someone should have the responsibility for "certifying" design

patterns.

• Designate points of contact, if necessary, between the development teams and the test teams. As testing

continues, testing advocates may be identified from within the ranks of the development team in order to

assist testers during key stages of the testing effort.

• Determine tool requirements based on project objectives (e.g. if no GUI is required, a GUI testing tool will

not be needed). Ensure the availability of the tools to the test team and provide training if needed.

• Provide input to the requirement definition team. Most errors are introduced at this time. Early detection

of requirement errors will prevent problems later.

• Develop the overall system test plan as early as possible. The system test plan is the detailed outline for all

testing activities. At appropriate stages, enhance or modify the system test plan and develop additional

plans for other general tests such as those related to integration or performance.

• Build test cases and test scripts based on specific project objectives. Reference these test cases to system

requirements, specifications, use-case descriptions, KADS hierarchies and the like.

• Exercise the test scripts as needed. Develop test drivers where appropriate to expedite the testing effort and

employ automated testing tools. Provide a mechanism or have in hand a tool for reporting the types and

severity of errors encountered.

• Conduct regression tests on code units that are reintroduced by the development team after changes have

been made. Reuse existing scripts as appropriate.

Following these recommendations does not necessarily guarantee a successful project. The primary predictor of

a successful testing effort is buy-in by project management on the value and importance of testing activities. This is

achieved through the collection and analysis of metrics related to both the software and the process by which the

software is generated. KADS patterns aid this process by providing a more thoroughly understood framework for

testing software.

123

This book is licensed under a Creative Commons Attribution 3.0 License

References

Arthur, L. (1993). Rapid Evolutionary Development. NY: Wiley.

Beizer, B. (1994). Software System Testing and Quality Assurance. NY: Van Nostrand Reinhold.

Berard, E. (1993). Essays on Object-Oriented Software Engineering, Vol. 1. Englewood Cliffs, NJ: Prentice-

Hall.

Chidamber, S. (1994). Metrics for Object Oriented Software Design. Ph.D. Diss. Alfred P. Sloan School of

Management, Massachusetts Institute of Technology.

Hetzel, B. (1993). Making Software Measurement Work. Boston: QED Publishing Group.

Kit, E. (1995). Software Testing in the Real World. NY: Addison-Wesley.

Lorenz, M. & J. Kidd (1994). Object-Oriented Software Metrics. Englewood Cliffs, NJ: Prentice-Hall..

Martin, J. (1991). Rapid Application Development. NY: Macmillan.

Musa, J., A. Iannino & K. Okumoto (1987). Software Reliability: Measurement, Prediction, Application. NY:

McGraw-Hill.

Shepperd, M. (1993). Software Engineering Metrics Volume I: Measures and Validations. London:

McGraw-Hill.

Tansley, D. & C. Hayball (1993). Knowledge-Based Systems Analysis and Design, A KADS Developer's

Handbook. Englewood Cliffs, NJ: Prentice-Hall.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 124 A Global Text

http://creativecommons.org/licenses/by/3.0/

9. A retail banking example

9. A retail banking example
Introduction

This chapter presents an end-to-end case study, which ties together the KADS pattern framework and

techniques covered in the preceding chapters: defining cognitive approaches and understanding the business case,

as well as specific applications of pattern modeling relating to object-oriented design, technical architecture and

application development. This chapter will describe the pattern framework that binds the various aspects of an

object-oriented (OO) project together, in the context of a case study for a large retail bank. The case study is based

on an actual engagement with a banking client that will be referred to as First Western Bank.

Background

The Quality Assurance (QA) Division of First Western Bank initiated a project with the goal of improving their

software-testing processes in terms of both quality and testing turnaround time. Specifically, the approach focused

on current practices pertaining to the creation and set-up of test data and the desire to streamline those tasks by

leveraging the use of data from the production environment for testing.

The test data sampling (TDS) application was proposed to assist First Western testing staff in selecting and

assembling sets of production data from various First Western production databases. With 300-400 changes to

production systems occurring weekly, the business case for streamlining the testing process was great. Also, given

the limited window of opportunity for time-to-market of new banking services, testing was often not given adequate

attention. The proposed application would reduce the amount of time needed to test (or increase the amount of

available testing time) by quickly identifying test data based on criteria selected by testers.

First Western also recognized the value in approaching the modeling and development aspects of the TDS

application from a cognitive perspective. The reasons for this were two-fold:

• The selection of test data and development of test conditions and scripts was largely a

cognitive process, and one that was performed within the bank by only a small cadre of experts.

Cognitive pattern modeling was identified as an approach that would enable knowledge capture and

modeling of the deeply embedded expertise associated with the development of test sets for retail banking

operations.

• Knowledge relating to the interdependencies of First Western's production environment

was also limited to a small group of experts. The mainframe environment had expanded over more

than 20 years to accommodate ever increasing volumes. The legacy environment maintained many data

and application couplings that were not well documented or understood. These interdependent couplings

were viewed as very complex, and would require a modeling approach to manage that complexity in order

to perform the production data extracts for the TDS application. Once again, the use of patterns was offered

as an approach that would help mitigate the risk associated with modeling this highly complex

environment.

125

This book is licensed under a Creative Commons Attribution 3.0 License

Project structure

The TDS application was structured in two initial phases, with each phase timeboxed and unique in scope and

deliverables. The project structure was intended to provide First Western Bank with tangible business value

throughout the development life cycle, culminating in a deployed scalable prototype, with complete, detailed KADS

Object models supporting application and technical architecture. The first two timeboxed phases were intended to

provide First Western with a rapid implementation, built upon an open, extensible architectural framework based

on the use of patterns.

Each phase was timeboxed at three months, and defined as follows:

• Phase I: Phase one covered initial KADS Object modeling of the problem space, including a breakdown of

the major patterns in the Quality Assurance Division. Major patterns were further refined to a second tier,

and for those subpatterns presumed to fall within initial scope of the TDS application, a third tier was

modeled. In addition, initial object modeling was performed using the Unified Modeling Language (UML)

and Use Case notation, and conceptual architecture for TDS was developed in parallel to these activities.

• Phase II: Phase two included detailed design and implementation of a scalable prototype of TDS. The

initial prototype deliverable was limited in scope to a few specific functional requirements. Major work

activities included modeling (KADS, Use Case and Sequence Diagram) of a specific set of patterns and

subpatterns for the prototype, and development of the logical/physical constrained architecture.

In addition to phases one and two, a third timeboxed development phase was planned and budgeted for, with

the expectation that success within the first two phases would warrant scaling up TDS to include full functionality.

Details of the phase three work plan were deferred until completion of phases one and two. Figure 9.1 shows an

outline of the three phases of the TDS project.

KADS model development

In order to put the TDS application into a framework consistent with the objectives of the QA Division at First

Western Bank, a top-level KADS diagram was constructed (Figure 9.2) with the collaboration of several First

Western testing analyst domain experts. The KADS diagram in Figure 9.2 indicates the metapattern (eight

operations), and was the result of several iterations and consensus-building work sessions over a ten-day period.

The definition of eight top-level operations/subpatterns is consistent with our experience that human cognition

(and a guideline rule of KADS modeling) tends to abstract concepts into groups of six to ten. Examples of library

templates that played a role in this system include: configuration, planning, modification, and classification.

Figure 9.1: TDS project.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 126 A Global Text

http://creativecommons.org/licenses/by/3.0/

9. A retail banking example

Metapattern description

Process 1.o: Review and input business requirements into preliminary specifications (user and system), from

the impact statement, business requirements and business work order.

Process 2.0: Develop integration test plan from the specifications.

Process 3.0: Identify the test conditions from the integration test plan, surveys and impact statements, in

order to provide the test data selection criteria.

Process 4.0: Develop test scripts from the test conditions, leveraging reuse through a (future state) shared

test-script repository.

Process 5.0: Extract production test data based on test-data selection criteria as well as the (future state)

sampling strategy in the integration test plan.

Process 6.0: Set-up the test environment incorporating the pretested application code, test scripts and data,

and necessary testing tools. This task includes all the necessary operational setup for test bank, as well as any

nontest bank environment preparation (e.g. credit card testing).

Process 7.0: Execute/run tests in the test-ready environment, according to the schedule in the integration test

plan.

Process 8.0: Implement tested code into production environment, and complete all post-installation QA as

necessary (i.e. regression testing).

Figure 9.2: TDS metapattern.

For the scalable TDS application, it was determined that detailed modeling of subpatterns would be required in

parts of operations 3, 4 and 5. Those operations were defined by the QA Division testing analysts as areas

127

This book is licensed under a Creative Commons Attribution 3.0 License

containing the core functionality for the TDS application. Additional specialized domain expertise was identified for

development of the KADS models for operations 3, 4 and 5.

Figure 9.3 shows the major second tier subpatterns that were modeled for all major operations 1 through 8 in

the QA Division. Additional modeling detail to the third and fourth tier was undertaken for operations 3, 4 and 5 in

order to deliver granularity necessary for detailed design and prototyping in phase two.

This diagram illustrates the subpatterns in 3, 4 and 5 that were modeled in finer detail for phase one of TDS.

Specifically, subpattern 3.6 will be the subject of further examples in this case study. These models were developed

over a two-week period, with frequent iterations and revisions and consensus building on the concept definitions.

Figure 9.3: TDS major subpatterns.

Requirements definition

The requirements definition for the TDS application is based upon requirements driven from operations within

the patterns defined in the KADS Object cognitive models. Use-case analysis based upon the KADS Object models

were developed to support detailed design of the requirements in phase two.

Figure 9.4 shows a drilled-down detail model of process 3.6, along with corresponding system requirements.

Process 3.6: Pattern description

Subprocess 3.6.1: Open a new or existing test suite from the TDS repository.

Subprocess 3.6.2: Create a new test suite by inputting a new test suite ID and description to the TDS.

Subprocess 3.6.3: Select an existing test suite from the TDS repository by selecting from a list of test suite

IDs.

Subprocess 3.6.4: Browse /modify/delete a test suite from the repository.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 128 A Global Text

http://creativecommons.org/licenses/by/3.0/

9. A retail banking example

Figure 9.4: Process 3.6: enter suites, scripts and conditions.

Conditions Object Model

Initial object models (static object diagrams and sequence diagram) were created from mapping the concept

hierarchies in the KADS models to the appropriate class definition in the object model. Class/concept abstractions

in the KADS model should map to roughly the same level of detail in the object model. For example, the

metaconcept "Production Data" in the top-level diagram is defined in a domain hierarchy as having an "is-a"

relationship with the concepts "Customer", "Account", and "Service," as in the following example:

Production Data (is-a)

Customer

Account

RTS

Brokerage

Credit Card

Service

Safe Deposit

129

This book is licensed under a Creative Commons Attribution 3.0 License

Express Card

Channel

These concepts are then incorporated in a meaningful way in second tier sub-diagrams, and are further refined

into a number of distinct subtypes in sub-sub diagrams. Figure 9.5 illustrates the levels of abstraction of the

concepts in the example above in their corresponding KADS diagrams. The top-level concept, "Production Data,"

logically appears in the top level diagram. The second tier concepts, "Account", "Service", and "Customer", logically

appear in the second-tier diagram, and so on. The following three figures illustrate the concept abstractions

represented in the KADS and object diagrams.

Figures 9.6 and 9.7 show the major class types and associations mapped from detailed modeling of patterns 3.0,

4.0 and 5.0. These classes are represented in Unified Modeling Language (UML).

Figure 9.5: Levels of abstraction.

Conceptual technical-architecture model

The final component of the phase-one deliverable was a conceptual technical-architecture, which outlined the

approach for Model-View-Controller (MVC). The MVC provided the best "fit" at the conceptual architecture level

based on the requirements identified from the KADS object models and the high-level business objectives identified

by First Western Bank.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 130 A Global Text

http://creativecommons.org/licenses/by/3.0/

9. A retail banking example

Figure 9.6: Object model: model class category.

Figure 9.7: Object model: view class category.

The TDS application domain was partitioned into three class categories based on the MVC framework.

• Model (information): The model classes are responsible for materializing objects, managing the storage of

persistent objects and the life cycle of transitory objects. Model objects usually live remotely, and close (if

possible) to their storage managers. Model stubs live on the workstation that provides templates for

manipulating the models living elsewhere in the distributed environment through object references.

• View Object (interface): A view object communicates with a graphical user interface (such as Microsoft

Windows, OS/2 Presentation Manager, or X Windows) using an Event-Driven Messaging Architecture. The

user interface consists of a "window instance" composed of "widgets," which generates events to the view

based on some user input. Typically the view has only enough embedded intelligence to understand how to

populate a window, perform simple field validation and send messages or to trigger events to the control

object.

• Control (business logic): The control object is responsible for the logic attributed to the business object

and serves as the manager for object behavior. Control objects catch view events and message the view or

131

This book is licensed under a Creative Commons Attribution 3.0 License

model objects as necessary to deliver desired functionality. The control object provides the glue between the

model and interface objects.

Conceptual architecture also involved the construction of a high-level pattern framework. The top-level view is

illustrated in Figure 9.8. Figure 9.9 shows the conceptual architecture for MVC.

Phase II

Phase two of TDS was allocated within a three-month timebox and included several intermediate deliverables as

well as an end deliverable of a scalable prototype TDS application. After the development environment had been set

up (application development-tool licenses, versioning software, server and ORB access), the phase one design and

requirements deliverables were reviewed and a detailed task breakdown was developed for phase two.

The functionality in the first release of the prototype was largely captured within the KADS pattern 3.6. It was

determined that further detailed pattern models would be developed within that task, as well as development of use

cases by the domain experts. The purpose of the use cases was to provide screen interaction scenarios for each of

the cognitive patterns such as "develop test conditions" and "develop test scripts".

Figure 9.8: TDS architecture metapattern.

Model refinement

Major class categories and relationships were modeled within class categories in UML, represented in Figure

9.10. Figure 9.6 is collapsed within the "model" class category. Figure 9.7 is collapsed within the "view" category.

Refinement of the model partitioning was undertaken in parallel to refinement of the models themselves

(attributes, operations, relationships, concurrency, persistence). In addition, KADS patterns were drilled down to

further detail as necessary.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 132 A Global Text

http://creativecommons.org/licenses/by/3.0/

9. A retail banking example

Figure 9.9: TDS conceptual architecture.

Use Cases

Use Cases were developed by First Western domain experts in phase two to assist with validation of

requirements for the view component and development of GUIs. Domain experts were asked to create use-case

scenarios for interacting with the TDS application, for developing new test conditions, test suites, and reusing test

data from the repository. Use cases were generally used as enhancements to the KADS patterns, and were labeled

according to the KADS pattern/subpattern numbering scheme (e.g. Use Case 3.6.2.2 corresponds to KADS

subpattern 3.6.2.2). Message-trace diagrams and GUI screen prototypes were developed directly from use cases,

such as the following example:

Pattern #: 3.6.2

Use Case: Create a New Test Suite

Purpose: This use case describes the process in which a new test suite

gets created and added to the repository, using the prototype.

Actors: The actors for this use case are:

• quality assurance business analysts responsible for "develop integration test plan" (process

2.0);

• prototype;

• repository.

133

This book is licensed under a Creative Commons Attribution 3.0 License

Figure 9.10: TDS class categories.

Preconditions: An integration-test kick off meeting is held during which the new or changed

software application is described and the business users are identified. Subsequently, the Quality

Assurance Business Analysts would start developing a preliminary integration-test plan, which

would include a scope of the project and the testing time frames.

Primary flow: The Quality Assurance Business Analysts access the prototype by clicking on the

"test" icon. The "Welcome to the Testing System" Splash Screen will appear, and then immediately

disappear. A new window titled "Test Suites" will appear with an iconic button labeled "New Test

Suite Template." In addition to the template iconic button, the window will also display icons that

represent existing test suites. For this use case we want to create a new test suite, so we would

double-click on the "New Test Suite Template" iconic button.

A new icon will appear on the window with the title "Empty Test Suite" highlighted. Because the icon

is already selected, it can be easily renamed with the test-suite title that you want. Proceed with

renaming the test suite, and then double-click on the icon.

A window (with the new test-suite title) will display a Notebook with a tab highlighted and labeled

"Test Suite Info". The tab will display the following input fields:

• requester first name

• requester last name

• requester phone

• version ID

• test start date

• test end date

• install date

• test suite description

To create a new Test Suite, the above fields must be completed. See the “Library of problem solving

templates” appendix for field specifications.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 134 A Global Text

http://creativecommons.org/licenses/by/3.0/

9. A retail banking example

Postconditions: When all of the required information has been entered on the "Test Suite Info" tab,

the user presses the "OK" Push Button to confirm the entered information. The user can now proceed

with the other Notebook tabs, or select "Save" from the File menu.

Alternative flow: The alternative flow would be to locate an existing test-suite icon from the "Test

Suites" window that closely resembles the test suite you want to create, and perform a copy function.

See the "Copy a Test Suite" use case for a more detailed flow description.

UML behavior diagrams

Collaboration diagrams and sequence diagrams were created for all use cases and corresponding KADS patterns.

The sequence diagram and collaboration diagram, shown in Figures 9.11 and 9.12, respectively, model the object

behavior required for the KADS pattern 3.6.2 and corresponding Use Case 3.6.2.

Figure 9.11: Sequence diagram.

Figure 9.12: Collaboration diagram.

135

This book is licensed under a Creative Commons Attribution 3.0 License

Logical technical-architecture model

The architecture-logical model refined in phase two was developed from a set of refined KADS models that were

drilled down from the major patterns shown in Figure 9.7. All detailed KADS patterns from Figure 9.7 resulted in a

set of architecture concept hierarchies that were defined and grouped into appropriate Model-View-Controller

object categories. Examples of the object relationship diagrams for MVC are included in Figure 9.13 (Model), Figure

9.14 (View and Figure 9.15 (Controller).

Prototype

The prototype development for TDS was able to proceed very rapidly based on the detailed design

documentation provided in the KADS Object and use-case models. Prototype development was divided along

implementing elements of the Model-View-Controller (MVC). Screen layouts were created to support the use cases,

and independently a development team worked on code to enable the local and remote controller elements. Still

another team, with greater expertise in database design, worked on realization of the model for the repository. This

team also created sample instances of the object model to use in prototyping/testing of screen elements.

Figures 9.16, 9.17 and 9.18 show examples of the screens created to support KADS and use-case models for

pattern 3.6.2. Note that these interface screens are represented in a "notebook" tab metaphor, and reference the

major concepts modeled in KADS, Use Case and Object diagrams. The interface screens and underlying

functionality in the application are the end result of analysis from the top-level KADS model, to the finer-grained

KADS model (pattern 3.6), to the application and architecture object models and finally to the prototype screen

itself.

Summary

The TDS phase one and two work was completed within the allocated timebox periods, and delivered the

functional requirements identified as within scope for patterns 3, 4 and 5. The application was architected using

MVC in order to accommodate First Western's ever-changing business environment and testing requirements. First

Western had indicated a probable future requirement to deploy the TDS application on their internal intranet using

a net browser interface. The application view elements were decoupled from the remote-controller elements

(application business logic) to make this sort of re-deployment relatively easy.

The first release of TDS was limited in scope, yet proved to deliver order of magnitude improvement in time and

money for First Western's quality-testing processes. In addition, the testing process was determined to be more

rigorous, and resulted in quality and consistency improvements in test results. Perhaps most important, the TDS

application was readily accepted within the user community (testers and business analysts) because of its intuitive

interface and utility based on cognitive modeling of the testing process.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 136 A Global Text

http://creativecommons.org/licenses/by/3.0/

9. A retail banking example

Figure 9.13: MVC Model.

Figure 9.14: MVC view.

Figure 9.15: MVC controller.

137

This book is licensed under a Creative Commons Attribution 3.0 License

Figure 9.16: TDS GUI example: Test suite.

Figure 9.17: TDS GUI example: Test condition.

Figure 9.18: TDS GUI example: test script.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 138 A Global Text

http://creativecommons.org/licenses/by/3.0/

This book is licensed under a Creative Commons Attribution 3.0 License

Appendix A: Library of
problem-solving templates

KADS Object problem solving template taxonomy

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 139 A Global Text

http://creativecommons.org/licenses/by/3.0/

Appendix A: Library of problem-solving templates

Name: Systematic diagnosis: (identification–diagnosis)

Definition Determining the cause and location of a problem by the use of hypothesis and tests.

Strategies: Traverse a consists-of or causes knowledge structure.

Source: Tansley & Hayball, 1993

140

This book is licensed under a Creative Commons Attribution 3.0 License

Name: Mixed mode diagnosis: (identification–diagnosis)

Definition: Identifying faults with a system, given a set of complaints, using a combination of the

essence of the Localization and Causal Tracing tasks, together with Heuristic

Classification.

Strategies: Attempt to capture and separate out the different ways of operating the task.

Source: Tansley & Hayball, 1993

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 141 A Global Text

http://creativecommons.org/licenses/by/3.0/

Appendix A: Library of problem-solving templates

Name: Verification: (identification–verification)

Definition: Determining whether an assertion made about a system is consistent with (at least

some of) the actual values of the observables of the system

Strategies: Describe how to choose between a goal-driven, data-driven, or mixed-initiative

approach to verification, if needed. Otherwise, use a fixed approach.

Source: Tansley & Hayball, 1993

142

This book is licensed under a Creative Commons Attribution 3.0 License

Name: Correlation: (identification–correlation)

Definition: Comparing two entities (systems) and producing some result on the basis of that

comparison. Assessment is a specialization

Strategies: Correlation typically has a lot of strategic information. Base it on availability of data,

format or structure of data, level of abstraction, changes over time.

Source: Tansley & Hayball, 1993

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 143 A Global Text

http://creativecommons.org/licenses/by/3.0/

Appendix A: Library of problem-solving templates

Name: Suitability assessment: (identification–correlation)

Definition: The process of comparing an expected value with an abstracted or extracted data

value, resulting in a (usually) binary decision, and where the decision may be subject to

compensating factors

Strategies: Need for pre-assessment abstraction of data, top-down vs. bottom-down approach

to working through the system model. How long to continue in the Compensation

Loop.

Source: Gardner, 1996

144

This book is licensed under a Creative Commons Attribution 3.0 License

Name: Heuristic classification: (identification–classification)

Definition: The process of hypothesizing and reaching a conclusion using heuristic knowledge

Strategies: If cost of obtaining data is high, choose backward-reasoning approach; else use a

more forward-reasoning approach. How accurate must the solution be, to what level of

classification? Which level of "specialize" is needed?

Source: Tansley & Hayball, 1993; Gardner, 1996

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 145 A Global Text

http://creativecommons.org/licenses/by/3.0/

Appendix A: Library of problem-solving templates

Name: Systematic refinement: (identification–classification)

Definition: Traversal of a is-a knowledge structure in order to determine a refinement of an

existing system.

Source: Tansley & Hayball, 1993

146

This book is licensed under a Creative Commons Attribution 3.0 License

Name: Predictions: (prediction–generic)

Definition: Determine what will happen next, to, or within a system in a certain situation

Strategies: Constrain the inference so that only the required outcome is deduced.

Source: Tansley & Hayball, 1993

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 147 A Global Text

http://creativecommons.org/licenses/by/3.0/

Appendix A: Library of problem-solving templates

Name: Prediction of values: (prediction)

Definition: Identification of values of variables in a system, starting with an informal system

model which is transformed into a formal one from which (qualitatively) values are

derived.

Strategies: Choose an appropriate task model, monitor, and update.

Source: Tansley & Hayball, 1993; Gardner, 1996

148

This book is licensed under a Creative Commons Attribution 3.0 License

Name: Prediction of behavior one: (prediction–quantitative reasoning)

Definition: Determine what will happen next, to or within a system in a certain situation. Precise

prediction is not required. Use simpler quantitative math , quick problem solving. Use a

library of modeling elements to build the system model

Strategies: Plan or choose a task structure (depth-first, breadth-first). Monitoring execution

(when a reasonable outcome has been found).

Source: Tansley & Hayball, 1993

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 149 A Global Text

http://creativecommons.org/licenses/by/3.0/

Appendix A: Library of problem-solving templates

Name: Prediction of behavior two: (prediction–quantitative reasoning)

Definition: Determining the future behavior of a system or structure by analyzing its current and

past state

Strategies: Plan or choose a task structure (depth-first, breadth-first). Monitoring execution

(when a reasonable outcome has been found).

Updating/changing the task structure.

Source: Gardner, 1996

150

This book is licensed under a Creative Commons Attribution 3.0 License

Name: Repair: (modification)

Definition: Changing the characteristics of a "system" or structure with the goal of changing its

behavior. This is an area of growth in KADS

Source: Gardner, 1996

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 151 A Global Text

http://creativecommons.org/licenses/by/3.0/

Appendix A: Library of problem-solving templates

Name: Generic design: (synthesis–design)

Definition: Specifying the components and architecture of some artifact, given a statement of the

role that that artifact must fulfill

Strategies: Control of degree of overlap between inference. Could be based on externally arising

constraints and/or constraints from design guidelines or paradigms.

Source: Tcmsley & Haybatl, 1993

152

This book is licensed under a Creative Commons Attribution 3.0 License

Name: Product design: (synthesis—design)

Definition: Specifying the components, the structure and the function of a product, given a

statement of the problem the product will solve

Source: Gardner, 1996

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 153 A Global Text

http://creativecommons.org/licenses/by/3.0/

Appendix A: Library of problem-solving templates

Name: Hierarchical design: (synthesis–design)

Definition: A design task in which a model of the artifact is first built and then modified: the

design works at different levels of abstraction by recursion. This is a special case of the

Generic Design and is not fully refined.

Strategies: If well understood, follow a structured task approach. Otherwise, fill in skeletal

models.

How long to recurse. Note: recursive steps shown in italics.

Source: Tansley & Hayball, 1993

154

This book is licensed under a Creative Commons Attribution 3.0 License

Name: Incremental design: (synthesis design)

Definition: Expansion of the Transform/Expand/Refine inference found in generic design.

Special case of Generic Design and not fully refined.

Strategies: Describe if and how to combine functional decomposition-driven versus conceptual

model class-driven approaches. Are inferences carried out in parallel?

Source: Tansley & Hayball, 1993

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 155 A Global Text

http://creativecommons.org/licenses/by/3.0/

Appendix A: Library of problem-solving templates

Name: Simple configuration: (synthesis–configuration)

Definition: Assembling elements of a system together such that spatial or logical constraints are

not violated in the case when there are no common resources that can help satisfy

several types of functions

Strategies: Use pure nominate, pure verify, or mixture of the two. Control of overlap between

inferences in nominate and verify.

Source: Tansley & Hayball, 1993

156

This book is licensed under a Creative Commons Attribution 3.0 License

Name: Incremental configuration: (synthesis–configuration)

Definition: Assembling elements of a system together such that spatial or logical constraints are

not violated in the case when common resources can help satisfy several types of

functions

Strategies: How to iterate over the "grouping contexts" and increase the coverage of the

configuration. Ordering of the matches and decompositions.

Source: Tansley & Hayball, 1993

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 157 A Global Text

http://creativecommons.org/licenses/by/3.0/

Appendix A: Library of problem-solving templates

Name: Planning: (synthesis–planning)

Definition: Taking an initial state and determining the actions required to meet a final goal (and

sub-goal) within a set of constraints. Output is a refined version of the original plan with

some or all of its actions decomposed. Optionally, a resource allocation can be output.

Strategies: Identification of and resolution of conflict between goals. Importance of meta-goals.

Source: Tansley & Hayball, 1993

158

This book is licensed under a Creative Commons Attribution 3.0 License

Name: Scheduling one: (synthesis–planning)

Definition: Take a plan and determine the temporal ordering of groups of actions within that plan

according to a set of minimizing constraints.

Strategies: Take into account a data-driven or constraint-driven approach or mixture of the two.

Source: Tansley & Hayball, 1993

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 159 A Global Text

http://creativecommons.org/licenses/by/3.0/

Appendix A: Library of problem-solving templates

Name: Scheduling two: (synthesis–planning)

Definition: Arriving at a schedule, given resources, planning steps, and planning periods

Source: Gardner, 1996

160

This book is licensed under a Creative Commons Attribution 3.0 License

Appendix B: Definitions of
selected PST operations

Abstract (opposite of "specify"). Process of placing concept (or a set of concepts) with associated

attribute(s) into a superset that contains those attributes as a subset of all superset attributes. For example: X walks

on two feet, therefore X is human, where the category "human" includes other attributes of humans.

Assign value. Process of giving a value to an attribute. For example: assign the value of "322" to the "product

code" attribute.

Classify. Process of placing a concept into a category, based on well-defined, structured criteria. For example:

identify a specific species of beetle according to the Guide to Insect Identification Taxonomy.

Compare. Process of determining if a difference exists between two values. For example: does the value of x

equal the value of y?

Compose (opposite of "decompose"). Process of arranging a set of individual concepts into a coherent

whole. For example: a stereo system made up of various components.

Compute (also known as "evaluate"). Process of calculating a new value for an attribute.

Decompose (opposite of "compose"). Process of identifying all of the individual concepts making up a

coherent whole. For example: the individual parts making up a stereo system, such as the tuner.

Expand. Process of enlarging the meaning of a concept. For example: the continuous reevaluation of a product

code from its basic meaning (RFT45) to its fully loaded meaning (RFT45.8.73).

Generalize. Process of placing two or more related concepts into a category. For example: Brad Pitt and Dustin

Hoffman are both actors.

Heuristic match. Process of identifying a pattern of similarities between seemingly unlike patterns. For

example: using the metaphor of water to explain electricity.

Identify. Process of placing a concept into a category. For example: adolescents are students.

Instantiate. Process of assigning a value(s) to an attribute(s) that, when completed, distinguishes the example

of a concept from the other examples of concepts in a category. For example: Mary is a student with ID#534-78-

9832.

Match. Process of determining if a structure or pattern of concepts is related to a structure or pattern of other

concepts. For example: to what extent does a Boeing 747 resemble a MD11?

Merge. Process of combining two groups of concepts into one category. For example: creating a category called

"all students" when an all-girls school merges with an all-boys school.

Parse. Process of placing a linear structure into a graph structure. For example: the diagramming of the parts of

a sentence (such as noun phrases).

Replace. Process of replacing a subset of concepts back into their original category. For example: tax records

that have removed for an IRS investigation and that are then returned.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 161 A Global Text

http://creativecommons.org/licenses/by/3.0/

Appendix B: Definitions of selected PST operations

Select (also known as "extract"). Process of choosing one or more (but not all) concepts from a category,

based on well-defined and detailed criteria. For example: selecting all female students with the name "Hilary," age

15, with brown hair and brown eyes, from the category of all students.

Sort. Process of ordering a set of concepts based on a set of criteria. For example: sorting mail according to zip

code.

Specify (opposite of "abstract"). Process or creating a subset of concepts from a larger category. For

example: all Arabian horses from the larger category of horses.

162

This book is licensed under a Creative Commons Attribution 3.0 License

Appendix C: Glossary
Attribute. A characteristic or property of a concept or an object type. For example, the attributes "new" or

"existing" describe the concept "customer".

Behavior. The manner in which objects change over time.

Business logic. Refers to an implemented set of business rules that govern, manipulate or control business

data or processes. In the Model-View-Controller architecture, business logic is implemented as one or more control

objects.

Business process modeling. An activity that describes business processes in terms of tasks, personnel roles

and responsibilities in regards to those tasks, and the business data or information that are associated with those

tasks.

Business process reengineering (BPR). A popular management discipline for redesigning and

streamlining the business processes of an organization.

Business rule. A mapping of a set of business conditions to a set of conclusion. Rules can be either simple or

chained. Simple rules are of the form of if-then-else statements. Chained rules are those that invoke other rules,

thus providing a means for representing more complicated types of behavior.

Cognitive maps. A specialized framework representation consisting of landmarks, paths, directions and

overviews used for problem solving and reasoning. KADS Object is a kind of cognitive map.

Cognitive modeling. A technique that models the knowledge, not the data, required to conduct human or

system activities. KADS Object is an example of a cognitive modeling approach.

Collaborations. In KADS Object, refers to manipulations on the set of concepts.

Compiled knowledge. Any kind of knowledge of a procedure or technique that is "embedded" in the mind of

an individual and is often difficult to extract or articulate. Examples of compiled knowledge include how to tie shoe

laces or how to play the violin.

Complexity. An informal or intuitive feeling experienced when dealing with an inordinate amount of

information or interrelationships within a system. More formally, a function that describes the length of a message

required to convey specific information or the length of time need to perform a particular task.

Concept description. A definition or description of a concept (an idea, a tangible or intangible thing, or

event). The description reflects the static or structural aspect of a cognitive pattern.

Concept sorting. A technique for identifying and structuring concepts and their relationships in a specific

domain.

Connectionism. A theory of the mind in which neural networks provide a realistic model of how the brain

(hence mind) works.

Core process. The primary process of an organization, which is directly related to the mission of the business.

Decomposition. The act of replacing a single object type with two or more simpler components. In KADS

Object, potential candidates for decomposition are the operations, which when expanded, result in models of

subpatterns.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 163 A Global Text

http://creativecommons.org/licenses/by/3.0/

Appendix C: Glossary

Design traceability. The ability to follow design decisions from the point of the cognitive model, through the

object model, to the generated code.

Domains. An innate kind of cognitive model used by a perceiving individual, which identifies and interprets a

class of phenomena assumed to share certain properties. They exist at all levels of abstraction.

Elicitation technique. Any approach where the goal is to acquire information/knowledge from a person. See

Knowledge acquisition.

Event-flow diagrams. A type of behavior diagram which depicts the flow of events of a given model.

Event recall. An knowledge acquisition activity whereby an individual recalls past situations or experiences.

Used for attaining understanding, not necessarily for fact gathering.

Event schema. A diagram which depicts end-to-end processing and collaborations among objects at high

levels of abstractions. This type of diagram is currently unique to the Martin/Odell object notation, although it is

work-in-progress for UML.

Event trace. A type of behavioral diagram used to show the specific interactions between object types/classes.

Complex, exception-driven class behavior is modeled by event traces.

Frameworks. An organization of situation types that occur during a system life cycle and that constitute an

organizing structure for a system. Also described as reusable class hierarchies, generic specifications or libraries of

code.

Hawthorne effect. An effect in which the behavior of a participant changes because she/he is aware of being

watched by someone else. This is a problem in certain knowledge-elicitation techniques.

Hierarchy. A classification or ordering of concepts based on a specified relationship.

Inference. The term given to "operations" by the European KADS community. Refers to the transformation or

manipulation of knowledge/ information. Types of inferences used in KADS include classify or match.

Interviewing. A knowledge-acquisition technique used to elicit or discover information about a process or

activity. Interviewees are typically referred to as "subject-matter experts".

Iterative/incremental development. A software-development lifecycle approach that is characterized by a

repetitive sequence of analysis, design, code and test stages as increasingly more functionality is built into the

system.

KADS. Knowledge-Acquisition and Design Structures, also called "Common KADS".

KADS Object. A variant of Common KADS used for the cognitive modeling and development of object-

oriented applications, technical architecture, and business processes.

Knowledge acquisition. Techniques employed to elicit domain-specific knowledge from experts or users.

Techniques include interviewing, protocol analysis, concept sorting, scenarios, observations, and event recall.

Knowledge analysis. A term used to describe the elicitation and modeling activities that are required to

describe the problem-solving strategies used by individuals, organizations, systems, code, or technical architecture.

Knowledge-based systems (KBS). Any computer system that uses embedded human knowledge,

represented in the form of chained rules, which are fired to reach some conclusion. Knowledge-based systems are

sometimes called "expert systems".

Knowledge management. A discipline that recognizes the importance of intellectual assets and the desire to

manage these assets properly.

164

This book is licensed under a Creative Commons Attribution 3.0 License

Mental models. A theory of the mind in which individuals are thought to innately construct models of the

contents of problems. They represent a mental "picture", which can be created and manipulated to predict and/or

cause an outcome.

Message. The means by which an object invokes a method in another object. For example, if a user wants to

store information about a customer in a repository, the customer object would message the storage object to carry

out the appropriate action.

Meta-pattern. A high-level pattern in which lower-level patterns are embedded in operations.

Model-view-controller (MVC). A type of application architectural paradigm that partitions components of

the application into decoupled units called "Model", "View" and "Controller". The Model component represents the

object model; the View is a representation of one or more different views of data or information (such as shown in a

list box or spreadsheet); and the Controller provides the application and business logic needed to manipulate,

display and store the data/information.

Multiplicity. A mapping of the relationship between one object and another.

Neural nets. A type of computer architecture represented in the form or nodes and connections, which

operates in an analogous manner to functioning neurons in the human brain. Neural nets estimate input-output

functions through a "learning" or "training" process.

Object. An instance of a class.

Object interaction diagram. A type of diagram that depicts the collaborations and associations among a set

of objects.

Object model. A type of diagram that shows the attributes, methods and relationship among a set of objects.

Object type. A generalized kind of object for which common attributes and behaviors exist.

Observation. A type of knowledge-acquisition technique based on the viewing of an individual who is solving a

problem or performing a task in a simulated or realistic environment. It is used in discovering how and why a

person makes a judgment or a decision.

Operation. Any kind of permissible action undertaken on a concept that results in a change of state of a

concept, a change of values of attributes of a concept or the addition/deletion of a concept. In object-oriented

systems, operations are implemented as methods.

Pattern. (1) Cognitive A reusable cognitive description of activities that take place within a reasoning/problem-

solving framework (e.g. “system diagnosis”). (2) Design A detailed low-level, reusable procedural description of a

stereotypical situation in which objects are involved (e.g. “creation of an object”).

Pattern description. A textual explanation for problem-solving-template diagrams.

Problem-solving template (PST). A KADS pattern in which a particular set of concepts are grouped and

structured according to relationships and which focuses on the problem solving/reasoning elements in a process

Suitability Assessment is an example of a PST.

Protocol analysis. A technique designed to elicit very detailed information regarding a particular process and

is usually applied at a subprocess level.

Role. A named set of concepts that serve a specific purpose in a given operation. In a problem-solving template,

a "role" is indicated by a rectangle.

Scenario. A knowledge elicitation technique which results in a description of a task or problem solution from

the perspective of a person, process or prototype. In OO, used to complete sequence diagrams.

Cognitive Patterns: Problem-Solving Frameworks for Object Technology 165 A Global Text

http://creativecommons.org/licenses/by/3.0/

Appendix C: Glossary

Simulation model. A representation of a real-world object or system created. Used to evaluate conditions or

operations where it is too impractical or too costly to do so otherwise.

Skill-set requirements. The set of skills/knowledge needed by business analysts, programmers or other types

of employees of an organization.

State diagram. A diagram that contains information about state and state transitions of an object.

State-transition diagram. A diagram that describes or graphically represents the changes in state of an

object.

Static model. See Object model.

Strategic description. An application of metalevel management, control or planning functions that affect the

ordering and dependencies of PST patterns.

Subject-matter expert (SME). An expert in a particular business or process domain who acts as a

knowledgeable resource in that area.

Subpattern. A pattern subsumed or embedded within another pattern. Operations identified in PSTs are

examples of potential subpatterns.

Sustaining process. A process that supports a core process. A core process is one that is directly related to the

mission of a business (e.g. producing aircraft engines). Sustaining processes would include those that support the

production, such as human resources.

Technical architecture. The conceptual, logical and physical frameworks that describe the structure,

behavior and collaborations of complex system elements required to fulfill the goals of an organization.

Testing. The process by which software errors are systematically discovered. Testing is a holistic activity, taking

into consideration such factors as test-team organization, the development life cycle of the application under test,

overall management objectives, supporting test tools and an enterprise-wide testing strategy.

Token. A representation of a real-world object that can be manipulated internally.

Use case. A sequence of transactions used to describe the processes of a business or an information system. It

defines how the process or system interacts with external users or other systems (called actors). The use-case

concept was developed by Jacobson.

Unified modeling language (UML). A composite object modeling language primarily based on best-of-

breed approaches from Rumbaugh, Booch, and Jacobson.

User requirements. Concepts, hierarchies, and KADS patterns reflect user requirements. In addition, user

requirements are usually associated with operations and use cases.

166

