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PREFACE 

 This introduction to Group Theory, with its emphasis on Lie Groups 

and their application to the study of symmetries of the fundamental 

constituents of matter, has its origin in a one-semester course that I taught at 

Yale University for more than ten years.  The course was developed for 

Seniors, and advanced Juniors, majoring in the Physical Sciences.  The 

students had generally completed the core courses for their majors, and had 

taken intermediate level courses in Linear Algebra, Real and Complex 

Analysis, Ordinary Linear Differential Equations, and some of the Special 

Functions of Physics.  Group Theory was not a mathematical requirement for 

a degree in the Physical Sciences.  The majority of existing undergraduate 

textbooks on Group Theory and its applications in Physics tend to be either 

highly qualitative or highly mathematical.  The purpose of this introduction 

is to steer a middle course that provides the student with a sound 

mathematical basis for studying the symmetry properties of the fundamental 

particles.  It is not generally appreciated by Physicists that continuous 

transformation groups (Lie Groups) originated in the Theory of Differential 

Equations.  The infinitesimal generators of Lie Groups therefore have forms 

that involve differential operators and their commutators, and these operators 
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and their algebraic properties have found, and continue to find, a natural place 

in the development of Quantum Physics. 

        Guilford, CT. 

                                    June, 2000. 
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1 

INTRODUCTION 

 The notion of geometrical symmetry in Art and in Nature is a familiar 

one.  In Modern Physics, this notion has evolved to include symmetries of an 

abstract kind.  These new symmetries play an essential part in the theories of 

the microstructure of matter.  The basic symmetries found in Nature seem to 

originate in the mathematical structure of the laws themselves, laws that 

govern the motions of the galaxies on the one hand and the motions of quarks 

in nucleons on the other. 

 In the Newtonian era, the laws of Nature were deduced from a small 

number of imperfect observations by a small number of renowned scientists 

and mathematicians.  It was not until the Einsteinian era, however, that the 

significance of the symmetries associated with the laws was fully 

appreciated.  The discovery of space-time symmetries has led to the widely 

held belief that the laws of Nature can be derived from symmetry, or 

invariance, principles.  Our incomplete knowledge of the fundamental 

interactions means that we are not yet in a position to confirm this belief.  

We therefore use arguments based on empirically established laws and 

restricted symmetry principles to guide us in our search for the fundamental 
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symmetries.  Frequently, it is important to understand why the symmetry of a 

system is observed to be broken. 

 In Geometry, an object with a definite shape, size, location, and 

orientation constitutes a state whose symmetry properties, or invariants, are 

to be studied.  Any transformation that leaves the state unchanged in form is 

called a symmetry transformation.  The greater the number of symmetry 

transformations that a state can undergo, the higher its symmetry.  If the 

number of conditions that define the state is reduced then the symmetry of 

the state is increased.  For example, an object characterized by oblateness 

alone is symmetric under all transformations except a change of shape. 

 In describing the symmetry of a state of the most general kind (not 

simply geometric), the algebraic structure of the set of symmetry operators 

must be given; it is not sufficient to give the number of operations, and 

nothing else.  The law of combination of the operators must be stated.  It is 

the algebraic group that fully characterizes the symmetry of the general 

state. 

 The Theory of Groups came about unexpectedly.  Galois showed that 

an equation of degree n, where n is an integer greater than or equal to five 

cannot, in general, be solved by algebraic means.  In the course of this great 

work, he developed the ideas of Lagrange, Ruffini, and Abel and introduced 
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the concept of a group.  Galois discussed the functional relationships among 

the roots of an equation, and showed that they have symmetries associated 

with them under permutations of the roots. 

 The operators that transform one functional relationship into another 

are elements of a set that is characteristic of the equation; the set of 

operators is called the Galois group of the equation.   

 In the 1850’s, Cayley showed that every finite group is isomorphic to a 

certain permutation group.  The geometrical symmetries of crystals are 

described in terms of finite groups.  These symmetries are discussed in many 

standard works (see bibliography) and therefore, they will not be discussed 

in this book. 

 In the brief period between 1924 and 1928, Quantum Mechanics was 

developed. Almost immediately, it was recognized by Weyl, and by Wigner, 

that certain parts of Group Theory could be used as a powerful analytical tool 

in Quantum Physics.  Their ideas have been developed over the decades in 

many areas that range from the Theory of Solids to Particle Physics. 

 The essential role played by groups that are characterized by 

parameters that vary continuously in a given range was first emphasized by 

Wigner.  These groups are known as Lie Groups.  They have become 

increasingly important in many branches of contemporary physics, 
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particularly Nuclear and Particle Physics.  Fifty years after Galois had 

introduced the concept of a group in the Theory of Equations, Lie introduced 

the concept of a continuous transformation group in the Theory of 

Differential Equations.  Lie’s theory unified many of the disconnected 

methods of solving differential equations that had evolved over a period of 

two hundred years.  Infinitesimal unitary transformations play a key role in 

discussions of the fundamental conservation laws of Physics. 

 In Classical Dynamics, the invariance of the equations of motion of a 

particle, or system of particles, under the Galilean transformation is a basic 

part of everyday relativity.  The search for the transformation that leaves 

Maxwell’s equations of Electromagnetism unchanged in form (invariant) 

under a linear transformation of the space-time coordinates, led to the 

discovery of the Lorentz transformation.  The fundamental importance of this 

transformation, and its related invariants, cannot be overstated. 

2 
 

GALOIS GROUPS 
 
     In the early 19th - century, Abel proved that it is not possible to solve the 

general polynomial equation of degree greater than four by algebraic means.  

He attempted to characterize all equations that can be solved by radicals.  Abel 
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did not solve this fundamental problem.  The problem was taken up and solved 

by one of the greatest innovators in Mathematics, namely, Galois. 

2.1. Solving cubic equations 
 
 The main ideas of the Galois procedure in the Theory of Equations, and 

their relationship to later developments in Mathematics and Physics, can be 

introduced in a plausible way by considering the standard problem of solving a 

cubic equation.  

 Consider solutions of the general cubic equation 

 Ax3 + 3Bx2 + 3Cx + D = 0, where A − D are rational constants. 

If the substitution y = Ax + B is made, the equation becomes 

              y3 + 3Hy + G = 0 

where 

     H = AC − B2   

and 

               G = A2D − 3ABC + 2B3. 

The cubic has three real roots if G2 + 4H3 < 0 and two imaginary roots if G2 + 

4H3 > 0.  (See any standard work on the Theory of Equations). 

 If all the roots are real, a trigonometrical method can be used to obtain 

the solutions, as follows: 

 the Fourier series of cos3u is  
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          cos3u = (3/4)cosu + (1/4)cos3u. 

Putting 

        y = scosu in the equation y3 + 3Hy + G = 0 

     (s > 0), 

gives 

    cos3u + (3H/s2)cosu + G/s3 = 0. 

Comparing the Fourier series with this equation leads to 

        s = 2 √(−H) 

and 

          cos3u = −4G/s3. 

If v is any value of u satisfying cos3u = −4G/s3, the general solution is 

               3u = 2nπ ± 3v, where n is an integer. 

Three different values of cosu are given by  

 

         u = v, and 2π/3 ± v. 

The three solutions of the given cubic equation are then 

      scosv, and scos(2π/3 ± v). 

 Consider solutions of the equation 

            x3 − 3x + 1 = 0. 

In this case, 
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        H = −1 and G2 + 4H3 = −3. 

All the roots are therefore real, and they are given by solving 

   cos3u = −4G/s3 = −4(1/8) = −1/2 

or, 

                           3u = cos-1(−1/2). 

The values of u are therefore 2π/9, 4π/9, and 8π/9, and the roots are 

     x1 = 2cos(2π/9), x2 = 2cos(4π/9), and x3 = 2cos(8π/9). 

2.2. Symmetries of the roots 

 The roots x1, x2, and x3 exhibit a simple pattern.  Relationships among 

them can be readily found by writing them in the complex form: 

2cosθ = eiθ + e-iθ where θ = 2π/9 so that 

       x1 = eiθ + e-iθ , 

       x2 = e2iθ + e-2iθ , 

and 

       x3 = e4iθ + e-4iθ . 

Squaring these values gives 

              x1
2 = x2 + 2, 

              x2
2 = x3 + 2, 

and 

              x3
2 = x1 + 2. 
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The relationships among the roots have the functional form f(x1,x2,x3) = 0.  

Other relationships exist; for example, by considering the sum of the roots we 

find 

    x1 + x2
2 + x2 − 2 = 0 

    x2 + x3
2 + x3 − 2 = 0, 

and 

    x3 + x1
2 + x1 − 2 = 0. 

Transformations from one root to another can be made by doubling-the-angle, 

θ. 

 The functional relationships among the roots have an algebraic symmetry 

associated with them under interchanges (substitutions) of the roots.  If Ω  is the 

operator that changes f(x1,x2,x3) into f(x2,x3,x1) then 

        Ωf(x1,x2,x3) → f(x2,x3,x1), 

       Ω2f(x1,x2,x3) → f(x3,x1,x2), 

and 

       Ω3f(x1,x2,x3) → f(x1,x2,x3). 

The operator Ω3 = I, is the identity. 

In the present case, 

     Ω(x1
2 − x2 − 2) = (x2

2 − x3 − 2) = 0, 

and 
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    Ω2(x1
2 − x2 − 2) = (x3

2 − x1 − 2) = 0. 

2.3. The Galois group of an equation. 

 The set of operators {I, Ω , Ω2} introduced above, is called the Galois 

group of the equation x3 − 3x + 1 = 0. (It will be shown later that it is 

isomorphic to the cyclic group, C3). 

 The elements of a Galois group are operators that interchange the roots 

of an equation in such a way that the transformed functional relationships are 

true relationships.  For example, if the equation 

   x1 + x2
2 + x2 − 2 = 0 

is valid, then so is 

      Ω(x1 + x2
2 + x2 − 2 ) = x2 + x3

2 + x3 − 2 = 0. 

True functional relationships are polynomials with rational coefficients. 

2.4. Algebraic fields 

 We now consider the Galois procedure in a more general way.  An 

algebraic solution of the general nth - degree polynomial 

      aoxn + a1xn-1 + ... an = 0 

is given in terms of the coefficients ai using a finite number of operations      

(+,-,×,÷,√).  The term "solution by radicals" is sometimes used because the 

operation of extracting a square root is included in the process.  If an infinite 

number of operations is allowed, solutions of the general polynomial can be 
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obtained using transcendental functions.  The coefficients ai necessarily belong 

to a field which is closed under the rational operations.  If the field is the set of 

rational numbers, Q, we need to know whether or not the solutions of a given 

equation belong to Q.  For example, if 

         x2 − 3 = 0 

we see that the coefficient -3 belongs to Q, whereas the roots of the equation,   

xi = ± √3, do not.  It is therefore necessary to extend Q to Q', (say) by adjoining 

numbers of the form a√3 to Q, where a is in Q. 

 In discussing the cubic equation x3 − 3x + 1 = 0 in 2.2, we found certain 

functions of the roots f(x1,x2,x3) = 0 that are symmetric under permutations of 

the roots.  The symmetry operators formed the Galois group of the equation.  

 For a general polynomial: 

       xn + a1xn-1 + a2xn-2 + .. an = 0, 

functional relations of the roots are given in terms of the coefficients in the 

standard way 

     x1 + x2 + x3 …                              … + xn  = −a1 

     x1x2 + x1x3 + … x2x3 + x2x4 + … + xn-1xn  =  a2 

     x1x2x3 + x2x3x4 + …                 + xn-2xn-1xn = −a3  

     .     . 

     x1x2x3 …                                      … xn-1xn =  ±an. 
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 Other symmetric functions of the roots can be written in terms of these 

basic symmetric polynomials and, therefore, in terms of the coefficients.  

Rational symmetric functions also can be constructed that involve the roots and 

the coefficients of a given equation.  For example, consider the quartic 

       x4 + a2x2 + a4 = 0. 

The roots of this equation satisfy the equations 

                   x1 + x2 + x3 + x4 = 0 

                   x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 = a2 

                   x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 = 0 

                   x1x2x3x4 = a4. 

 We can form any rational symmetric expression from these basic 

equations (for example, (3a4
3 − 2a2)/2a4

2 = f(x1,x2,x3,x4)).  In general, every 

rational symmetric function that belongs to the field F of the coefficients, ai, of 

a general polynomial equation can be written rationally in terms of the 

coefficients. 

 The Galois group, Gal, of an equation associated with a field F therefore 

has the property that if a rational function of the roots of the equation is 

invariant under all permutations of Gal, then it is equal to a quantity in F. 
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 Whether or not an algebraic equation can be broken down into simpler 

equations is important in the theory of equations.  Consider, for example, the 

equation 

                         x6 = 3. 

It can be solved by writing x3 = y, y2 = 3 or 

                  x = (√3)1/3.  

 To solve the equation, it is necessary to calculate square and cube roots 

 not sixth roots.  The equation x6 = 3 is said to be compound (it can be broken 

down into simpler equations), whereas x2 = 3 is said to be atomic.  The atomic 

properties of the Galois group of an equation reveal the atomic nature of the 

equation, itself.  (In Chapter 5, it will be seen that a group is atomic ("simple") 

if it contains no proper invariant subgroups). 

 The determination of the Galois groups associated with an arbitrary 

polynomial with unknown roots is far from straightforward.  We can gain some 

insight into the Galois method, however, by studying the group structure of the 

quartic 

                x4 + a2x2 + a4 = 0 

with known roots 

          x1 = ((−a2 + µ)/2)1/2 , x2 = −x1, 

          x3 = ((−a2 − µ)/2)1/2 , x4 = −x3, 
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where 

                         µ = (a2
2 − 4a4)1/2. 

 The field F of the quartic equation contains the rationals Q, and the 

rational expressions formed from the coefficients a2 and a4. 

 The relations 

          x1 + x2 = x3 + x4 = 0 

are in the field F. 

 Only eight of the 4! possible permutations of the roots leave these 

relations invariant in F; they are 

             x1 x2 x3 x4              x1 x2 x3 x4             x1 x2 x3 x4 
{ P1 =                    ,  P2 =                    ,  P3 =                  ,  
             x1 x2 x3 x4              x1 x2 x4 x3             x2 x1 x3 x4     
             x1 x2 x3 x4              x1 x2 x3 x4             x1 x2 x3 x4    
   P4 =                      , P5 =                    ,  P6 =                  , 
             x2 x1 x4 x3              x3 x4 x1 x2             x3 x4 x2 x1   
             x1 x2 x3 x4              x1 x2 x3 x4     
   P7 =                      , P8  =                   }. 
             x4 x3 x1 x2              x4 x3 x2 x1    
 
The set {P1,...P8} is the Galois group of the quartic in F.  It is a subgroup of the 

full set of twenty four permutations.  We can form an infinite number of true 

relations among the roots in F.  If we extend the field F by adjoining irrational 

expressions of the coefficients, other true relations among the roots can be 

formed in the extended field, F'.  Consider, for example, the extended field 

formed by adjoining µ (= (a2
2 − 4a4)) to F so that the relation 
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               x1
2 − x3

2 = µ is in F'. 

We have met the relations  

                      x1  = −x2  and x3  = −x4 

so that 

                      x1
2 =  x2

2 and x3
2 =  x4

2. 

Another relation in F' is therefore 

               x2
2 − x4

2 = µ. 

The permutations that leave these relations true in F' are then 

    {P1, P2, P3, P4}. 

This set is the Galois group of the quartic in F'.  It is a subgroup of the set 

{P1,...P8}. 

 If we extend the field F' by adjoining the irrational expression            

((−a2 − µ)/2)1/2 to form the field F'' then the relation 

                 x3 − x4 = 2((−a2 − µ)/2)1/2 is in F''. 

This relation is invariant under the two permutations {P1, P3}. 

This set is the Galois group of the quartic in F''.  It is a subgroup of the set 

{P1, P2, P3, P4}. 

 If, finally, we extend the field F'' by adjoining the irrational                

((−a2 + µ)/2)1/2 to form the field F''' then the relation 

                    x1 − x2 = 2((−a2 − µ)/2)1/2 is in F'''. 
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This relation is invariant under the identity transformation, P1 , alone; it is the 

Galois group of the quartic in F''.   

 The full group, and the subgroups, associated with the quartic equation 

are of order 24, 8, 4, 2, and 1.  (The order of a group is the number of distinct 

elements that it contains).  In 5.4, we shall prove that the order of a subgroup is 

always an integral divisor of the order of the full group.  The order of the full 

group divided by the order of a subgroup is called the index of the subgroup. 

 Galois introduced the idea of a normal or invariant subgroup: if H is a 

normal subgroup of G then 

         HG − GH = [H, G] = 0. 

(H commutes with every element of G, see 5.5). 

Normal subgroups are also called either invariant or self-conjugate subgroups.  

A normal subgroup H is maximal if no other subgroup of G contains H. 

2.5. Solvability of polynomial equations 

 Galois defined the group of a given polynomial equation to be either the 

symmetric group, Sn, or a subgroup of Sn, (see 5.6).  The Galois method 

therefore involves the following steps: 

1.  The determination of the Galois group, Gal, of the equation. 

2.  The choice of a maximal subgroup of Hmax(1).  In the above case, {P1, ...P8} is 

a maximal subgroup of Gal = S4. 
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3.  The choice of a maximal subgroup of Hmax(1) from step 2.  

In the above case, {P1,..P4} = Hmax(2) is a maximal subgroup of Hmax(1). 

The process is continued until Hmax = {P1} = {I}.  

 The groups Gal, Hmax(1), ..,Hmax(k) = I, form a composition series.  The 

composition indices are given by the ratios of the successive orders of the 

groups: 

   gn/h(1), h(1)/h(2), ...h(k-1)/1. 

The composition indices of the symmetric groups Sn for n = 2 to 7 are found to 

be: 

      n   Composition Indices 

      2   2 

      3   2, 3 

      4   2, 3, 2, 2 

      5   2, 60 

      6   2, 360 

      7   2, 2520 

 We shall state, without proof, Galois' theorem: 

 A polynomial equation can be solved algebraically if and only if its group 

is solvable. 
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Galois defined a solvable group as one in which the composition indices are all 

prime numbers.  Furthermore, he showed that if n > 4, the sequence of maximal 

normal subgroups is Sn, An, I, where An is the Alternating Group with (n!)/2 

elements.  The composition indices are then 2 and (n!)/2.  For n > 4, however, 

(n!)/2 is not prime, therefore the groups Sn are not solvable for n > 4.  Using 

Galois' Theorem, we see that it is therefore not possible to solve, algebraically, 

a general polynomial equation of degree n > 4. 

3 

SOME ALGEBRAIC INVARIANTS  

     Although algebraic invariants first appeared in the works of Lagrange and 

Gauss in connection with the Theory of Numbers, the study of algebraic 

invariants as an independent branch of Mathematics did not begin until the 

work of Boole in 1841.  Before discussing this work, it will be convenient to 

introduce matrix versions of real bilinear forms, B, defined by  

                               B = ∑i=1
m ∑j=1

n aijxiyj   

where 

                               x = [x1,x2,...xm], an m-vector,  

                               y = [y1,y2,...yn], an n-vector, 

and aij are real coefficients.  The square brackets denote a column vector. 

 In matrix notation, the bilinear form is 
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                               B = xTAy 

where 

                                                 a11  .    .           a1n    

                                     A =        .    .    .                     .   

                                                 am1    .    .            amn    

  

 The scalar product of two n-vectors is seen to be a special case of a 

bilinear form in which A = I. 

 If x = y, the bilinear form becomes a quadratic form, Q: 

                               Q = xTAx. 

3.1. Invariants of binary quadratic forms  

 Boole began by considering the properties of the binary 

quadratic form  

               Q(x,y) = ax2 + 2hxy + by2 

under a linear transformation of the coordinates 

                      x' = Mx 

where  

                      x  = [x,y], 

                      x' = [x',y'], 

and 
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                                      i    j     
              M  =       k   l    . 

 
 
 The matrix M transforms an orthogonal coordinate system into an oblique 

coordinate system in which the new x'- axis has a slope (k/i), and the new y'- 

axis has a slope (l/j), as shown: 

        y                                                    
                                                             
                                                             
                   y′                                        
                                                          [i+j,k+l]   
                                                             
                                                             
 
             [j,l]  
                                                              
                                                             
   [0,1]                        [1,1]                        
                                                              x′ 
                                                   [i,k]            
                                                             
                                                                                                                       
       [0,0]             [1,0]                           x 
     
 
       The transformation of a unit square under M. 
 
 
 The transformation is linear, therefore the new function Q'(x',y') is a 

binary quadratic: 
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                     Q'(x',y') = a'x'2 + 2h'x'y' + b'y'2. 

 The original function can be written  

                  Q(x,y) = xTDx 

where 

                                              a  h   
                          D =             , 
                                              h  b   
 

and the determinant of D is 

                     detD = ab − h2, called the discriminant of Q. 

 The transformed function can be written 

                         Q'(x',y') = x'TD'x'  

where 

                                             a'  h'  
                        D' =              , 
                                             h'  b' 
and 

                   detD' = a'b' − h'2, the discriminant of Q'. 

Now, 

                        Q'(x',y') = (Mx)TD'Mx 

                   = xTMTD'Mx 

and this is equal to Q(x,y) if 

                       MTD'M = D. 
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The invariance of the form Q(x,y) under the coordinate transformation M 

therefore leads to the relation  

               (detM)2detD' = detD 

because 

                 detMT = detM. 

The explicit form of this equation involving determinants is 

          (il − jk)2(a'b' − h'2) = (ab − h2). 

The discriminant (ab - h2) of Q is said to be an invariant of the transformation 

because it is equal to the discriminant (a'b' − h'2) of Q', apart from a factor       

(il − jk)2 that depends on the transformation itself, and not on the arguments 

a,b,h of the function Q. 

3.2. General algebraic invariants 

 The study of general algebraic invariants is an important branch of 

Mathematics. 

 A binary form in two variables is 

               f(x1,x2) = aox1
n + a1x1

n–1x2 + ...anx2
n 

                            = ∑ aix1
n–ix2

i 

If there are three or four variables, we speak of ternary forms or quaternary 

forms. 
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 A binary form is transformed under the linear transformation M as 

follows 

    f(x1,x2) => f'(x1',x2') = ao'x1'n + a1'x1'n-1x2' + .. 

The coefficients 

                    ao, a1, a2,..≠  ao', a1', a2' .. 

and the roots of the equation 

                       f(x1,x2) = 0 

differ from the roots of the equation 

                    f'(x1',x2') = 0. 

 Any function I(ao,a1,...an) of the coefficients of f that satisfies 

           rwI(ao',a1',...an') = I(ao,a1,...an)  

is said to be an invariant of f if the quantity r depends only on the 

transformation matrix M, and not on the coefficients ai of the function being 

transformed.  The degree of the invariant is the degree of the coefficients, and 

the exponent w is called the weight.  In the example discussed above, the 

degree is two, and the weight is two. 

 Any function, C, of the coefficients and the variables of a form f that is 

invariant under the transformation M, except for a multiplicative factor that is a 

power of the discriminant of M, is said to be a covariant of f.  For binary forms, 

C therefore satisfies 
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 rwC(ao',a1',...an'; x1',x2') = C(ao,a1,...an; x1,x2). 

 It is found that the Jacobian of two binary quadratic forms, f(x1,x2) and 

g(x1,x2), namely the determinant 

                              ∂f/∂x1  ∂f/∂x2      
                                    
                              ∂g/∂x1  ∂g/∂x2     
 

where ∂f/∂x1 is the partial derivative of f with respect to x1 etc., is a 

simultaneous covariant of weight one of the two forms. 

 The determinant 

                      ∂2f/∂x1
2    ∂2f/∂x1∂x2     

                                                        , 
                      ∂2g/∂x2∂x1  ∂2g/∂x2

2       
 

called the Hessian of the binary form f, is found to be a covariant of weight two.  

A full discussion of the general problem of algebraic invariants is outside the 

scope of this book.  The following example will, however, illustrate the method 

of finding an invariant in a particular case. 

Example: 

 To show that  

   (aoa2 − a1
2)(a1a3 − a2

2) − (aoa3 − a1a2)2/4 

is an invariant of the binary cubic 

   f(x,y) = aox3 + 3a1x2y + 3a2xy2 + a3y3 
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under a linear transformation of the coordinates. 

The cubic may be written 

          f(x,y) = (aox2+2a1xy+a2y2)x + (a1x2+2a2xy+a3y2)y 

                    = xTDx 

where 

                x = [x,y], 

and 

                          aox + a1y  a1x + a2y     
               D =                                . 
                          a1x + a2y  a2x + a3y      

 Let x be transformed to x': x' = Mx, where 

 

                            i  j    
               M =           
                            k  l    
  

then 

          f(x,y) = f'(x',y') 

if 

               D = MTD'M. 

Taking determinants, we obtain 

           detD = (detM)2detD', 

an invariant of f(x,y) under the transformation M. 
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 In this case, D is a function of x and y.  To emphasize this point, put 

           detD = φ(x,y) 

and 

           detD'= φ'(x',y') 

so that 

         φ(x,y) = (detM)2φ'(x',y' 

 

                   = (aox + a1y)(a2x + a3y) − (a1x + a2y)2 

                   = (aoa2 − a1
2)x2 + (aoa3 − a1a2)xy + (a1a3 − a2

2)y2 

                   = xTEx, 

where 

 

                         (aoa2 − a1
2 )      (aoa3 − a1a2)/2     

               E =                                            . 
                         (aoa3 − a1a2)/2    (a1a3 − a2

2 )       
 

Also, we have 

      φ'(x',y') = x'TE'x' 

                   = xTMTE'Mx 

therefore 

          xTEx = (detM)2xTMTE'Mx 
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so that 

               E = (detM)2MTE'M. 

Taking determinants, we obtain 

      detE = (detM)4detE' 

              = (aoa2 − a1
2)(a1a3 − a2

2) − (aoa3 − a1a2)2/4   

              = invariant of the binary cubic f(x,y) under the transformation x' = Mx. 

4 

SOME INVARIANTS OF PHYSICS 

4.1. Galilean invariance. 

 Events of finite extension and duration are part of the physical world.  

It will be convenient to introduce the notion of ideal events that have neither 

extension nor duration.  Ideal events may be represented as mathematical 

points in a space-time geometry.  A particular event, E, is described by the 

four components [t,x,y,z] where t is the time of the event, and x,y,z, are its 

three spatial coordinates. The time and space coordinates are referred to 

arbitrarily chosen origins.  The spatial mesh need not be Cartesian. 

 Let an event E[t,x], recorded by an observer O at the origin of an x-

axis, be recorded as the event E'[t',x'] by a second observer O', moving at 

constant speed V along the x-axis.  We suppose that their clocks are 

synchronized at t = t' = 0 when they coincide at a common origin, x = x' = 0.  
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At time t, we write the plausible equations 

       t' = t 

and 

        x' = x - Vt, 

where Vt is the distance traveled by O' in a time t.  These equations can be 

written 

    E'  = GE 

where 

           1    0     
      G  =                   .  
         −V   1     
 
G is the operator of the Galilean transformation. 

 The inverse equations are 

       t  = t' 

and 

      x  = x' + Vt' 

or 

       E  = G–1E' 

where G-1 is the inverse Galilean operator.  (It undoes the effect of G). 

 If we multiply t and t' by the constants k and k', respectively, where k 

and k' have dimensions of velocity then all terms have dimensions of length. 
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 In space-space, we have the Pythagorean form x2 + y2 = r2, an invariant 

under rotations.  We are therefore led to ask the question: is   (kt)2 + x2 

invariant under the operator G in space-time?  Calculation gives 

           (kt)2 + x2  = (k't')2 + x'2 + 2Vx't' + V2t'2 

           = (k't')2 + x'2  only if V = 0. 

We see, therefore, that Galilean space-time is not Pythagorean in its 

algebraic form.  We note, however, the key role played by acceleration in 

Galilean-Newtonian physics: 

 The velocities of the events according to O and O' are obtained by 

differentiating the equation x' = −Vt + x with respect to time, giving 

        v' = −V + v, 

a plausible result, based upon our experience. 

 Differentiating v' with respect to time gives 

           dv'/dt' = a' = dv/dt = a 

where a and a' are the accelerations in the two frames of reference.  The 

classical acceleration is invariant under the Galilean transformation.  If the 

relationship v' = v − V is used to describe the motion of a pulse of light, 

moving in empty space at v = c ≅ 3 x 108 m/s, it does not fit the facts.  All 

studies of very high speed particles that emit electromagnetic radiation show 

that v' = c for all values of the relative speed, V. 
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4.2. Lorentz invariance and Einstein's space-time symmetry. 

 It was Einstein, above all others, who advanced our understanding of 

the true nature of space-time and relative motion.  We shall see that he made 

use of a symmetry argument to find the changes that must be made to the 

Galilean transformation if it is to account for the relative motion of rapidly 

moving objects and of beams of light.  He recognized an inconsistency in the 

Galilean-Newtonian equations, based as they are, on everyday experience.  

Here, we shall restrict the discussion to non-accelerating, or so-called 

inertial frames. 

 We have seen that the classical equations relating the events E and E' 

are E' = GE, and the inverse E = G–1E' 

where 

                             1   0                        1   0      
                 G  =               and G–1  =             .   
                           −V  1                       V   1      
  
These equations are connected by the substitution V ↔ −V; this is an 

algebraic statement of the Newtonian principle of relativity.  Einstein 

incorporated this principle in his theory.  He also retained the linearity of the 

classical equations in the absence of any evidence to the contrary. 
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(Equispaced intervals of time and distance in one inertial frame remain 

equispaced in any other inertial frame).  He therefore symmetrized the space-

time equations as follows: 

  
 
                      t'         1   −V    t       
                          =                    . 
                       x'        −V   1    x       
 
Note, however, the inconsistency in the dimensions of the time-equation that 

has now been introduced: 

                t' =  t − Vx. 

The term Vx has dimensions of [L]2/[T], and not [T].  This can be corrected 

by introducing the invariant speed of light, c  a postulate in Einstein's 

theory that is consistent with experiment: 

                      ct' = ct − Vx/c 

so that all terms now have dimensions of length. 

 Einstein went further, and introduced a dimensionless quantity γ 

instead of the scaling factor of unity that appears in the Galilean equations of 

space-time.  This factor must be consistent with all observations.  The 

equations then become 

               ct' =     γct − βγx  

                 x' = −βγct +   γx, where β=V/c. 
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These can be written 

                     E'  = LE,  

where 

                                  γ   −βγ     
                        L  =                 , and E = [ct,x] 
                                  −βγ    γ     
 
L is the operator of the Lorentz transformation. 

 The inverse equation is 

                     E   = L–1E' 

where 

                          γ   βγ     
                      L–1 =                  . 
                         βγ    γ     
 
This is the inverse Lorentz transformation, obtained from L by changing      

β → −β (or ,V → −V); it has the effect of undoing the transformation L.  We 

can therefore write 

                  LL–1 = I 

or 

 
            γ  −βγ       γ   βγ            1   0     
                =              . 
         −βγ   γ       βγ    γ            0   1     
 
Equating elements gives 

                   γ2 − β2γ2 = 1 
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therefore, 

                                       γ = 1/√(1 − β2) (taking the positive root). 

4.3. The invariant interval. 

 Previously, it was shown that the space-time of Galileo and Newton is 

not Pythagorean in form.  We now ask the question: is Einsteinian space-

time Pythagorean in form?  Direct calculation leads to 

          (ct)2 + (x)2 = γ2(1 + β2)(ct')2 + 4βγ2x'ct' 

                           +γ2(1 + β2)x'2 

                           ≠ (ct')2 + (x')2 if β > 0. 

Note, however, that the difference of squares is an invariant under L: 

          (ct)2 − (x)2 = (ct')2 − (x')2 

because 

           γ2(1 − β2) = 1. 

Space-time is said to be pseudo-Euclidean. 

 The negative sign that characterizes Lorentz invariance can be 

included in the theory in a general way as follows. 

 We introduce two kinds of 4-vectors 

               xµ = [x0, x1, x2, x3], a contravariant vector, 

and 

              xµ = [x0, x1, x2, x3], a covariant vector, where 
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              xµ = [x0,−x1,−x2,−x3]. 

The scalar product of the vectors is defined as 

         xµTxµ = (x0, x1, x2, x3)[x0,−x1,−x2,−x3] 

                  = (x0)2 − ((x1)2 + (x2)2 + (x3)2) 

The event 4-vector is 

                      Eµ = [ct, x, y, z] and the covariant form is 

                      Eµ = [ct,−x,−y,−z] 

so that the Lorentz invariant scalar product is 

                 EµTEµ = (ct)2 − (x2 + y2 + z2). 

The 4-vector xµ transforms as  x'µ = Lxµ where L is 

                                     γ  −βγ   0    0     
                                 −βγ     γ    0    0    
                        L =                                . 
                                      0    0    1    0    
                                      0    0    0    1     
 
This is the operator of the Lorentz transformation if the motion of O' is along 

the x-axis of O's frame of reference. 

 Important consequences of the Lorentz transformation are that 

intervals of time measured in two different inertial frames are not the same 

but are related by the equation 

                    Δt' = γΔt 
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where Δt is an interval measured on a clock at rest in O's frame, and 

distances are given by 

                    Δl' = Δl/γ 

where Δl is a length measured on a ruler at rest in O's frame. 

4.4. The energy-momentum invariant. 

     A differential time interval, dt, cannot be used in a Lorentz-invariant way 

in kinematics.  We must use the proper time differential interval, dτ, defined 

by 

         (cdt)2 − dx2 = (cdt')2 − dx'2 ≡ (cdτ)2. 

     The Newtonian 3-velocity is 

                     vN = [dx/dt, dy/dt, dz/dt], 

and this must be replaced by the 4-velocity 

                     Vµ = [d(ct)/dτ, dx/dτ, dy/dτ, dz/dτ] 

                          = [d(ct)/dt, dx/dt, dy/dt, dz/dt]dt/dτ 

                          = [γc,γvN] . 

The scalar product is then 

                 VµVµ = (γc)2 − (γvN)2 

                         = (γc)2(1 − (vN/c)2)  

                         = c2. 

(In forming the scalar product, the transpose is understood). 
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The magnitude of the 4-velocity is Vµ = c, the invariant speed of light. 

     In Classical Mechanics, the concept of momentum is important because of 

its role as an invariant in an isolated system.  We therefore introduce the 

concept of 4-momentum in Relativistic Mechanics in order to find 

possible Lorentz invariants involving this new quantity.  The contravariant 4-

momentum is defined as: 

                      Pµ = mVµ 

where m is the mass of the particle. (It is a Lorentz scalar, the mass measured 

in the frame in which the particle is at rest). 

     The scalar product is 

                   PµPµ = (mc)2. 

Now, 

                      Pµ = [mγc, mγvN] 

therefore, 

                   PµPµ = (mγc)2 − (mγvN)2. 

Writing 

                      M = γm, the relativistic mass, we obtain 

                   PµPµ = (Mc)2 − (MvN)2 = (mc)2. 

Multiplying throughout by c2 gives 

     M2c4 − M2vN
2c2 = m2c4. 
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The quantity Mc2 has dimensions of energy; we therefore write 

                       E = Mc2 

the total energy of a freely moving particle. 

This leads to the fundamental invariant of dynamics 

                  c2PµPµ = E2 − (pc)2 = Eo2 

where 

                       Eo = mc2 is the rest energy of the particle, and p is 

its relativistic 3-momentum. 

     The total energy can be written: 

                        E = γEo = Eo + T, 

where 

                        T = Eo(γ − 1), 

the relativistic kinetic energy. 

     The magnitude of the 4-momentum is a Lorentz invariant 

                   Pµ = mc. 

The 4- momentum transforms as follows: 

                     P'µ = LPµ. 

For relative motion along the x-axis, this equation is equivalent to the 

equations 
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                      E' =   γE − βγcpx 

and 

                     cpx = -βγE +  γcpx . 

     Using the Planck-Einstein equations E = hν and 

E = pxc for photons, the energy equation becomes 

                      ν' = γν − βγν 

                         = γν(1 − β) 

                         =  ν(1 − β)/(1 − β2)1/2 

                         =  ν[(1 − β)/(1 + β)]1/2 . 

This is the relativistic Doppler shift for the frequency ν', measured in an 

inertial frame (primed) in terms of the frequency ν measured in another 

inertial frame (unprimed). 

4.5. The frequency-wavenumber invariant                                           

 Particle-wave duality, one of the most profound discoveries in Physics, 

has its origins in Lorentz invariance.  It was proposed by deBroglie in the 

early 1920's.  He used the following argument. 

     The displacement of a wave can be written 

                 y(t,r) = Acos(ωt − k•r) 

where ω = 2πν (the angular frequency), k = 2π/λ (the wavenumber), and  
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r = [x, y, z] (the position vector).  The phase (ωt − k•r) can be written  

((ω/c)ct − k•r), and this has the form of a Lorentz invariant obtained from 

the 4-vectors 

            Eµ[ct, r], and Kµ[ω/c, k] 

where Eµ is the event 4-vector, and Kµ is the "frequency-wavenumber" 4-

vector. 

     deBroglie noted that the 4-momentum Pµ is connected to the event 4-

vector Eµ through the 4-velocity Vµ, and the frequency-wavenumber 4-vector 

Kµ is connected to the event 4-vector Eµ through the Lorentz invariant phase 

of a wave ((ω/c)ct − k•r).  He therefore proposed that a direct connection 

must exist between Pµ and Kµ;  it is illustrated 

in the following diagram: 

                                        Eµ[ct,r]                                       
                                                                                        
 
  (Einstein) PµPµ= inv.                          EµKµ=inv. (deBroglie)  
                                                                                        
                  Pµ[E/c,p]                             Kµ[ω/c,k]                 
                                                                                         
                                     (deBroglie) 
 
      The coupling between Pµ and Kµ via Eµ. 

     deBroglie proposed that the connection is the simplest possible, namely, 

Pµ and Kµ are proportional to each other.  He realized that there could be 
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only one value for the constant of proportionality if the Planck-Einstein 

result for photons E = hω/2π is but a special case of a general result, it must 

be h/2π, where h is Planck’s constant.  Therefore, deBroglie proposed that 

                    Pµ ∝ Kµ 

or 

                    Pµ = (h/2π)Kµ. 

Equating the elements of the 4-vectors gives 

                    E  = (h/2π)ω 

and 

                    p  = (h/2π)k . 

In these remarkable equations, our notions of particles and waves are forever 

merged.  The smallness of the value of Planck's constant prevents us from 

observing the duality directly; however, it is clearly observed at the 

molecular, atomic, nuclear, and particle level. 

4.6. deBroglie's invariant. 

     The invariant formed from the frequency-wavenumber 4-vector is 

                  KµKµ = (ω/c, k)[ω/c,−k] 

                         = (ω/c)2 − k2 = (ωo/c)2, where ωo is the proper 

angular frequency. 
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     This invariant is the wave version of Einstein's energy-momentum 

invariant; it gives the dispersion relation 

                    ωo2 = ω2 − (kc)2. 

The ratio ω/k is the phase velocity of the wave, vφ. 

For a wave-packet, the group velocity vG is dω/dk; it can be obtained by 

differentiating the dispersion equation as follows: 

                       ωdω − kc2dk = 0 

therefore, 

                      vG = dω/dk = kc2/ω. 

     The deBroglie invariant involving the product of the phase and group 

velocity is therefore 

                    vφvG = (ω/k).(kc2/ω) = c2. 

     This is the wave-equivalent of Einstein's famous 

       E = Mc2. 

We see that 

                   vφvG = c2 = E/M 

or, 

                      vG = E/Mvφ = Ek/Mω = p/M = vN, the particle 

velocity. 

This result played an important part in the development of Wave Mechanics. 
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     We shall find in later chapters, that Lorentz transformations form a group, 

and that invariance principles are related directly to symmetry 

transformations and their associated groups. 

5 

GROUPS — CONCRETE AND ABSTRACT 

5.1  Some concrete examples 

 The elements of the set {±1, ±i}, where i = √−1, are the roots of the 

equation x4 = 1, the “fourth roots of unity”.  They have the following special 

properties: 

 1.  The product of any two elements of the set (including the same two 

elements) is always an element of the set.  (The elements obey closure). 

 2.  The order of combining pairs in the triple product of any elements of 

the set does not matter.  (The elements obey associativity). 

 3.  A unique element of the set exists such that the product of any 

element of the set and the unique element (called the identity) is equal to the 

element itself.  (An identity element exists). 

 4.  For each element of the set, a corresponding element exists such that 

the product of the element and its corresponding element (called the inverse) is 

equal to the identity.  (An inverse element exists). 
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 The set of elements {±1, ±i} with these four properties is said to form a 

GROUP. 

In this example, the law of composition of the group is multiplication; this need 

not be the case.  For example, the set of integers Z = {… −2, −1, 0, 1, 2, … } 

forms a group if the law of composition is addition.  In this group, the identity 

element is zero, and the inverse of each integer is the integer with the same 

magnitude but with opposite sign.   

 In a different vein, we consider the set of 4×4 matrices: 

                       1 0 0 0        0 0 0 1        0 0 1 0      0 1 0 0  
        {M} =     0 1 0 0   ,   1 0 0 0   ,     0 0 0 1 ,    0 0 1 0  . 
                       0 0 1 0        0 1 0 0        1 0 0 0      0 0 0 1  
                       0 0 0 1        0 0 1 0        0 1 0 0      1 0 0 0   
 
If the law of composition is matrix multiplication, then {M} is found to obey: 

 1 --closure 

and 

 2 --associativity, 

and to contain: 

 3 --an identity, diag(1, 1, 1, 1), 

and 

 4 --inverses. 

The set {M} forms a group under matrix multiplication. 
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5.2. Abstract groups 

 The examples given above illustrate the generality of the group concept.  

In the first example, the group elements are real and imaginary numbers, in the 

second, they are positive and negative integers, and in the third, they are 

matrices that represent linear operators (see later discussion).  Cayley, in the 

mid-19th century, first emphasized this generality, and he introduced the 

concept of an abstract group G that is a collection of n distinct elements (...gi...) 

for which a law of composition is given.  If n is finite, the group is said to be a 

group of order n.  The collection of elements must obey the four rules: 

1.  If gi, gj ∈ G then gn = gj•gi ∈ G ∀ gi, gj ∈ G (closure) 

2.  gk(gjgi) = (gkgj)gi [leaving out the composition symbol•] (associativity) 

3.  ∃ e ∈ G such that gie = egi = gi ∀ gi ∈ G (an identity exists) 

4.  If gi ∈ G then ∃ gi
–1 ∈ G such that gi

–1gi = gigi
–1 = e (an inverse exists). 

 For finite groups, the group structure is given by listing all compositions 

of pairs of elements in a group table, as follows: 

                e  .  gi    gj   .  ←(1st symbol, or operation, in pair) 
         e      .     .     .    . 
         .       .     .     .    . 
        gi      .   gigi  gigj    . 
        gj      .   gjgi  gjgj    . 
        gk     .   gkgi  gkgj    .   
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If gjgi = gigj ∀ gi, gj ∈ G, then G is said to be a commutative or abelian group.  

The group table of an abelian group is symmetric under reflection in the 

diagonal.  

 A group of elements that has the same structure as an abstract group is a 

realization of the group. 

5.3 The dihedral group, D3  

 The set of operations that leaves an equilateral triangle invariant under 

rotations in the plane about its center, and under reflections in the three planes 

through the vertices, perpendicular to the opposite sides, forms a group of six 

elements.  A study of the structure of this group (called the dihedral group, D3) 

illustrates the typical group-theoretical approach. 

 The geometric operations that leave the triangle invariant are: 

Rotations about the z-axis (anticlockwise rotations are positive) 

 Rz(0)     (123) → (123) = e, the identity 

 Rz(2π/3)(123) → (312)  = a 

 Rz(4π/3)(123) → (231)  = a2 

and reflections in the planes I, II, and III: 

          RI (123) → (132) = b 

         RII (123) → (321) = c 

        RIII (123) → (213) = d 
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 This set of operators is D3 = {e, a, a2, b, c, d}. 

Positive rotations are in an anticlockwise sense and the inverse rotations are in a 

clockwise sense, so that the inverse of e, a, a2 are 

  e–1 = e, a–1 = a2, and (a2)–1 = a. 

The inverses of the reflection operators are the operators themselves: 

  b–1 = b, c–1 = c, and d–1 = d. 

 We therefore see that the set D3 forms a group.  The group multiplication 

table is: 

  e  a  a2  b  c  d   
     e    e  a  a2  b  c  d   
     a    a  a2  e  d  b  c 
     a2    a2  e  a  c  d  b 
     b    b   c  d  e  a  a2 
     c    c   d  b  a2  e  a 
     d    d   b  c  a  a2  e 
 
In reading the table, we follow the rule that the first operation is written on the 

right: for example, ca2 = b.  A feature of the group D3 is that it can be 

subdivided into sets of either rotations involving {e, a, a2} or reflections 

involving {b, c, d}.  The set {e, a, a2} forms a group called the cyclic group of 

order three, C3.  A group is cyclic if all the elements of the group are powers of 

a single element.  The cyclic group of order n, Cn, is 

     Cn = {e, a, a2, a3, .....,an–1}, 
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where n is the smallest integer such that an = e, the identity.  Since 

          akan-k = an = e, 

an inverse an-k exists.  All cyclic groups are abelian. 

 The group D3 can be broken down into a part that is a group C3, and a 

part that is the product of one of the remaining elements and the elements of C3.  

For example, we can write 

    D3 = C3 + bC3 , b ∉ C3 

                  = {e, a, a2} + {b, ba, ba2} 

         = {e, a, a2} + {b, c, d} 

         = cC3 = dC3. 

This decomposition is a special case of an important theorem known as 

Lagrange’s theorem.  (Lagrange had considered permutations of roots of 

equations before Cauchy and Galois). 

5.4  Lagrange’s theorem 

 The order m of a subgroup Hm of a finite group Gn of order n is a factor 

(an integral divisor) of n. 

 Let  

  Gn = {g1= e, g2, g3, … gn} be a group of order n, and let 

  Hm = {h1= e, h2, h3, … hm} be a subgroup of Gn of order m. 
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If we take any element gk of Gn that is not in Hm, we can form the set of 

elements 

  {gkh1, gkh2, gkh3, ...gkhm} ≡ gkHm. 

This is called the left coset of Hm with respect to gk.  We note the important 

facts that all the elements of gkhj, j=1 to m are distinct, and that none of the 

elements gkhj belongs to Hm.  

 Every element gk that belongs to Gn but does not belong to Hm belongs to 

some coset gkHm so that Gn forms the union of Hm and a number of distinct 

(non-overlapping) cosets.  (There are (n − m) such distinct cosets).  Each coset 

has m different elements and therefore the order n of Gn is divisible by m, 

hence n = Km, where the integer K is called the index of the subgroup Hm under 

the group Gn. We therefore write 

   Gn = g1Hm + gj2Hm + gk3Hm + ....gνKHm 

where  

   gj2 ∈ Gn ∉ Hm, 

   gk3 ∈ Gn ∉ Hm, gj2Hm  
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   . 

   gnK ∈ Gn ∉ Hm, gj2Hm, gk3Hm, ...gn-1, K-1Hm. 

The subscripts 2, 3, 4, ..K are the indices of the group. 

 As an example, consider the permutations of three objects 1, 2, 3 (the 

group S3) and let Hm = C3 = {123, 312, 231}, the cyclic group of order three.  

The elements of S3 that are not in H3 are {132, 213, 321}.  Choosing gk = 132, 

we obtain 

        gkH3 = {132, 321, 213}, 

and therefore 

            S3 = C3 + gk2C3 ,K = 2. 

This is the result obtained in the decomposition of the group D3 , if we make the 

substitutions e = 123, a = 312, a2 = 231, b = 132, c = 321, and d = 213. 

The groups D3 and S3 are said to be isomorphic.  Isomorphic groups have the 

same group multiplication table.  Isomorphism is a special case of 

homomorphism that involves a many-to-one correspondence. 

5.5 Conjugate classes and invariant subgroups                                      
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 If there exists an element v ∈ Gn such that two elements a, b ∈ Gn are 

related by vav–1 = b, then b is said to be conjugate to a.  A finite group can be 

separated into sets that are conjugate to each other. 

 The class of Gn is defined as the set of conjugates of an element a ∈ Gn.  

The element itself belongs to this set.  If a is conjugate to b, the class conjugate 

to a and the class conjugate to b are the same.  If a is not conjugate to b, these 

classes have no common elements.  Gn can be decomposed into classes because 

each element of Gn belongs to a class. 

 An element of Gn that commutes with all elements of Gn forms a class by 

itself.   

 The elements of an abelian group are such that 

           bab–1 = a for all a, b ∈ Gn, 

so that 

              ba = ab. 

 If Hm is a subgroup of Gn, we can form the set 

   {aea–1, ah2a–1, ....ahma–1} = aHma–1 where a ∈ Gn . 

Now, aHma–1 is another subgroup of Hm in Gn.  Different subgroups may be 

found by choosing different elements a of Gn.  If, for all values of a ∈ Gn 
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         aHma–1 = Hm  

(all conjugate subgroups of Hm in Gn are identical to Hm),  

then Hm is said to be an invariant subgroup in Gn. 

 Alternatively, Hm is an invariant in Gn if the left- and right-cosets formed 

with any a ∈ Gn are equal, i. e. ahi = hka. 

 An invariant subgroup Hm of Gn commutes with all elements of Gn.  

Furthermore, if hi ∈ Hm then all elements ahia–1 ∈ Hm so that Hm is an invariant 

subgroup of Gn if it contains elements of Gn in complete classes. 

 Every group Gn contains two trivial invariant subgroups, Hm = Gn and 

Hm = e.  A group with no proper (non-trivail) invariant subgroups is said to be 

simple (atomic).  If none of the proper invariant subgroups of a group is abelian, 

the group is said to be semisimple. 

 An invariant subgroup Hm and its cosets form a group under 

multiplication called the factor group (written Gn/Hm) of Hm in Gn. 

 These formal aspects of Group Theory can be illustrated by considering 

the following example: 
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The group D3 = {e, a, a2, b, c, d} ~ S3 = {123, 312, 231, 132, 321, 213}.   C3 is 

a subgroup of S3: C3 = H3 = {e, a, a2} = {123, 312, 231}. 

Now, 

      bH3 = {132, 321, 213} = H3b 

      cH3 = {321, 213, 132} = H3c 

and 

       dH3 = {213,132, 321} = H3d. 

Since H3 is a proper invariant subgroup of S3, we see that S3 is not simple.  H3 is 

abelian therefore S3 is not semisimple. 

 The decomposition of S3 is 

      S3 = H3 + bH3 = H3 + H3b. 

and, in this case we have 

            H3b = H3c = H3d. 

(Since the index of H3 is 2, H3 must be invariant). 

 The conjugate classes are 

       e = e 

           eae–1 = ea = a 

           aaa–1 = ae = a 

     a2a(a2)–1  = a2a2 = a 
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          bab–1 = bab = a2 

          cac–1 = cac = a2  

          dad–1 = dad = a2  

The class conjugate to a is therefore {a, a2}. 

The class conjugate to b is found to be {b, c, d}.  The group S3 can be 

decomposed by classes: 

       S3 = {e} + {a, a2} + {b, c, d}. 

S3 contains three conjugate classes. 

  If we now consider Hm = {e, b} an abelian subgroup, we find  

    aHm = {a,d}, Hma = {a.c}, 

   a2Hm = {a2,c}, Hma2 = {a2, d}, etc. 

All left and right cosets are not equal: Hm = {e, b} is therefore not an invariant 

subgroup of S3. We can therefore write 

      S3 = {e, b} + {a, d} + {a2, c} 

            = Hm    +  aHm    + a2Hm. 

Applying Lagrange’s theorem to S3 gives the orders of the possible subgroups: 

they are 

   order 1: {e} 
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   order 2: {e, d}; {e, c}: {e, d} 

   order 3: {e, a, a2} (abelian and invariant) 

   order 6: S3. 

5.6 Permutations 

 A permutation of the set {1, 2, 3, ....,n} of n distinct elements is an 

ordered arrangement of the n elements.  If the order is changed then the 

permutation is changed.  The number of permutations of n distinct elements is 

n! 

 We begin with a familiar example: the permutations of three distinct 

objects labelled 1, 2, 3.  There are six possible arrangements; they are  

 123, 312, 231, 132, 321, 213. 

These arrangements can be written conveniently in matrix form: 
 
                      1 2 3               1 2 3                  1 2 3      
  π1 =              , π2 =               , π3 =                 , 
                      1 2 3               3 1 2                  2 3 1      
 
                      1 2 3               1 2 3                  1 2 3      
  π4 =              , π5 =               , π6  =                 . 
                      1 3 2               3 2 1                  2 1 3      
 
The product of two permutations is the result of performing one arrangement 

after another.  We then find 

   π2π3 = π1 

and 
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   π3π2 = π1 

whereas 

   π4π5 = π3 

and 

   π5π4 = π2. 

The permutations π1, π2, π3 commute in pairs (they correspond to the rotations 

of the dihedral group) whereas the permutations do not commute (they 

correspond to the reflections).  

 A general product of permutations can be written 

   s1  s2 .  .  .sn    1  2  .  .  n              1  2   .  .  n  
           =                        . 
   t1  t2 .  .  .tn     s1  s2 .  .  sn             t1  t2  .  .  tn    
 
 The permutations are found to have the following properties: 

1.  The product of two permutations of the set {1, 2, 3, …} is itself a 

permutation of the set.  (Closure) 

2.  The product obeys associativity: 

 (πkπj)πi = πk(πjπi), (not generally commutative). 

3.  An identity permutation exists. 

4.  An inverse permutation exists: 

                       s1  s2  .  .  .  sn                   
 π –1 =                           
                       1   2  .  .  .  n            
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such that ππ-1 = π-1π = identity permutation. 

The set of permutations therefore forms a group 

5.7 Cayley’s theorem: 

 Every finite group is isomorphic to a certain permutation group. 

Let Gn ={g1, g2, g3,  .  .  .gn} be a finite group of order n.  We choose any 

element gi in Gn, and we form the products that belong to Gn: 

 gig1, gig2, gig3,  .  .  . gign. 

These products are the n-elements of G, rearranged.  The permutation πi, 

associated with gi is therefore 

                              g1        g2        .         .         gn   
                 πi  =                                                          . 
                              gig1     gig2       .        .        gign   
 
If the permutation πj associated with gj is 
 
 
                              g1        g2         .         .         gn     
                πj  =                                                            , 
                             gjg1      gjg2        .         .       gjgn    
 
where gi ≠ gj, then  
 
                              g1         g2         .        .        gn        
             πjπi  =                                                               .   
                           (gjgi)gi  (gjgi)g2    .        .      (gjgi)gn    
 
This is the permutation that corresponds to the element gjgi of Gn. 
 
There is a direct correspondence between the elements of Gn and the n-

permutations {π1, π2, .  .  .πn}.  The group of permutations is a subgroup of the 
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full symmetric group of order n! that contains all the permutations of the 

elements g1, g2, .  .  gn. 

 Cayley’s theorem is important not only in the theory of finite groups but 

also in those quantum systems in which the indistinguishability of the 

fundamental particles means that certain quantities must be invariant under the 

exchange or permutation of the particles. 

6 

LIE’S DIFFERENTIAL EQUATION, INFINITESIMAL ROTATIONS 

AND ANGULAR MOMENTUM OPERATORS 

 Although the field of continuous transformation groups (Lie groups) has 

its origin in the theory of differential equations, we shall introduce the subject 

using geometrical ideas. 

6.1 Coordinate and vector rotations 

 A 3-vector v = [vx, vy, vz] transforms into v´ = [vx´, vy´, vz´] under a 

general coordinate rotation R   about the origin of an orthogonal coordinate 

system as follows: 

              v´ = R  v, 

where  
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                            i.i´     j.i´    k.i´      
               R  =     i.j´     j.j´    k.j´     
                                                       i.k´    j.k´   k.k´     
 
                                                       cosθii´   .       .             
                    =      cosθij´   .       .             
                                                       cosθik´   .   cosθkk´       
 
where i, j, k, i´, j´, k´ are orthogonal unit vectors, along the axes, before and 

after the transformation, and the cosθii´’s are direction cosines. 

The simplest case involves rotations in the x-y plane: 
 
                 vx´      =        cosθii´   cosθji    vx 
                  vy´                cosθij´   cosθjj´      vy         
 
 
 
 
         =       cosφ      sinφ       vx    = R c(φ)v 
                                            −sinφ     cosφ       vy    
 
where R c(φ) is the coordinate rotation operator.  If the vector is rotated in a 

fixed coordinate system, we have φ → −φ so that 

 
                     v´ = Rv(φ)v, 
where  
 
                   Rv(φ)    =      cosφ  −sinφ . 
                                          sinφ    cosφ   
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6.2  Lie’s differential equation 

 The main features of Lie’s Theory of Continuous Transformation Groups 

can best be introduced by discussing the properties of the rotation operator 

Rv(φ) when the angle of rotation is an infinitesimal.  In general, Rv(φ) 

transforms a point P[x, y] in the plane into a “new” point P´[x´, y´]:                  

P´ = Rv(φ)P.  Let the angle of rotation be sufficiently small for us to put cos(φ) 

≅ 1 and sin(φ) ≅ δφ, in which case, we have 

     Rv(δφ) =       1   −δφ    
                           δφ     1     
 
and 
 
     x´ =  x.1 − yδφ = x  − yδφ      

     y´ = xδφ + y.1  = xδφ + y    

Let the corresponding changes x → x´ and y → y´ be written 

    x´ = x + δx and y´ = y +δy 

so that  

    δx = −yδφ and δy = xδφ. 

We note that  

 
     Rv(δφ) =      1   0        +        0  −1  δφ 
                 0   1                  1    0     
 
        = I  + iδφ 
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where 
       i =  0   −1   = Rv(π/2). 
              1     0    
 
Lie introduced another important way to interpret the operator i = Rv(π/2) that 

involves the derivative of Rv(φ) evaluated at the identity value of the 

parameter, φ = 0: 

  dRv(φ)/dφ    =   −sinφ  −cosφ       =      0  −1   = i  
             φ =0        cosφ  −sinφ                 1    0     
                    φ = 0                   

so that  

                           Rv(δφ) = I + dRv(φ)/dφ .δφ,   
               φ = 0      
 
a quantity that differs from the identity I by a term that involves the  

infinitesimal, δφ: this is an infinitesimal transformation.  

 Lie was concerned with Differential Equations and not Geometry.  He 

was therefore motivated to discover the key equation 

  dRv(φ)/dφ  =      0  −1     cosφ  −sinφ      
          1    0         sinφ    cosφ      
 
            =  iRv(φ). 
This is Lie’s differential equation. 
 
Integrating between φ = 0 and φ = φ, we obtain 
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       Rv(φ)                            φ 

       ∫ dRv(φ)/Rv(φ)  = i ∫ dφ 
       I                                 0 
so that 
              ln(Rv(φ)/I) = iφ, 
or 
             Rv(φ) = Ieiφ , the solution of Lie’s equation. 
 
Previously, we obtained 
 
            Rv(φ) = Icosφ + isinφ. 
 
We have, therefore 
                Ieiφ  = Icosφ + isinφ .      
 
This is an independent proof of the famous Cotes-Euler equation. 
 
 We introduce an operator of the form 

         O = g(x, y, ∂/∂x, ∂/∂y), 

and ask the question: does 

        δx = Of(x, y; δφ) ?  

Lie answered the question in the affirmative; he found 

          δx = O(xδφ) = (x∂/∂y − y∂/∂x)xδφ = −yδφ 

and 

          δy = O(yδφ) = (x∂/∂y − y∂/∂x)y∂φ =  xδφ . 

Putting x = x1 and y = x2, we obtain 

       δxi = Xxiδφ , i = 1, 2 
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where  

     X = O = (x1∂/∂x2 − x2∂/∂x1), the “generator of rotations” in the plane. 

6.3 Exponentiation of infinitesimal rotations 

We have seen that 

          Rv(φ) = eiφ, 

and therefore 

       Rv(δφ) = I + iδφ, for an infinitesimal rotation, δφ 

Performing two infinitesimal rotations in succession, we have 

     Rv
2(δφ) = (I + iδφ)2 

         =  I + 2iδφ to first order, 

         = Rv(2δφ). 

Applying Rv(δφ) n-times gives 

             Rv
n(δφ) = Rv(nδφ) = einδφ = eiφ  

         = Rv(φ) (as n → ∞ and δφ → 0, the 

                product nδφ → φ). 

This result agrees, as it should, with the exact solution of Lie’s differential 

equation.   
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 A finite rotation can be built up by exponentiation of infinitesimal 

rotations, each one being close to the identity.  In general, this approach has the 

advantage that the infinitesimal form of a transformation can often be found in a 

straightforward way, whereas the finite form is often intractable. 

6.4 Infinitesimal rotations and angular momentum operators 

 In Classical Mechanics, the angular momentum of a mass m, moving in 

the plane about the origin of a cartesian reference frame with a momentum p is 

             Lz = r × p = rpsinφnz 

where nz is a unit vector normal to the plane, and φ is the angle between r and 

p.  In component form, we have 

            Lz
cl = xpy − ypx, where px and py are the cartesian 

components of p. 

 The transition between Classical and Quantum Mechanics is made by 

replacing 

             px by −i(h/2π)∂/∂x (a differential operator) 

and             py by −i(h/2π)∂/∂y (a differential operator), where h is 

Planck’s constant. 

We can therefore write the quantum operator as 

            Lz
Q = −i(h/2π)(x∂/∂y − y∂/∂x) = −i(h/2π)X 

and therefore 
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      X = iLz
Q/(h/2π), 

and 

      δxi =  Xxi δφ = (2πiLz
Q/h)xi δφ, i = 1,2. 

 Let an arbitrary, continuous, differentiable function f(x, y) be 

transformed under the infinitesimal changes 

      x´ = x − yδφ 

      y´ = y + xδφ . 

Using Taylor’s theorem, we can write 

     f(x´, y´) = f(x + δx, y + δy) 

          = f(x − yδφ, y + xδφ) 

          = f(x, y) + ((∂f/∂x)δx + ((∂f/∂y)δy)  

                                               = f(x, y) + δφ(−y(∂/∂x) + x(∂/∂y))f(x, y) 

          = I + 2πiδφLz/h)f(x, y) 

          = e2πiδφLz/h f(x, y) 

          = Rv(2πLzδφ/h) f(x, y). 

The invatriance of length under rotations follows at once from this result: 

     If f(x, y) = x2 + y2  then 

     ∂f/∂x = 2x and ∂f/∂y = 2y, and therefore 

       f(x´, y´) = f(x, y) + 2xδx + 2yδy 
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            = f(x, y) − 2x(yδφ) + 2y(xδφ) 

            = f(x, y) = x2 + y2 = invariant. 

This is the only form that leads to the invariance of length under rotations. 

6.5 3-dimensional rotations 

 Consider three successive counterclockwise rotations about the x, y´,  
 
and z´´ axes through angles µ, θ, and φ, respectively: 
 
                         z     
                                                                           z′              y′   
                                           y         µ about x                                    y 
 
 
                                          x                                                          x, x′   
 
 
                   z′                 y′                                            z′′         y′, y′′ 
                                                      θ about y´ 
 
 
                                             x′                                                   x′′      x′ 
 
                        z′′                                                       z′′′       y′′′ 
                                     y′′ 
                                                       φ about z´´ 
 
                 x′′′ 
 
                                             x′′                                                      x′′  
     The total transformation is R c(µ, θ, φ) = R c(φ)R c(θ)R c(µ)  

    cosφcosθ      cosφsinθsinµ + sinφcosµ      −cosφsinθcosµ + sinφsinµ       
     =   −sinφcosθ     −sinφsinθsinµ + cosφcosµ         sinφsinθcosµ + sinφsinµ      
        sinθ                  −cosθsinµ                                  cosθcosµ                   
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For infinitesimal rotations, the total rotation matrix is, to 1st-order in the δ’s: 

                                                         1              δφ             −δθ     
                     R c(δµ, δθ, δφ) =    −δφ              1                δµ      .  
                                                        δθ            −δµ               1      

The infinitesimal form can be written as follows: 

                                           1  δφ  0       1   0 −δθ        1   0    0      
    R c(δµ, δθ, δφ)   =     −δφ  1   0     0   1   0       0   1  δµ   
                                           0   0   1      δθ   0   1          0 −δµ  1    
 
                               =    I + Y3δφ  I + Y2δθ  I + Y1δµ        
 
where 
 
                                0   0  0                   0   0 −1                     0  1  0    
                  Y1 =      0   0  1  ,  Y2 =    0  0   0   ,   Y3 =    −1  0  0    .  
                                0 −1  0                   1   0   0                     0  0  0   
 
To 1st-order in the δ’s, we have 
 
                   R c(δµ, δθ, δφ)  = I  +  Y1δµ  +  Y2δθ  +  Y3δφ . 
 
6.6  Algebra of the angular momentum operators 
 
The algebraic properties of the Y’s are important.  For example, we find 
 
 that their commutators are: 
 
                                 0   0   0     0   0 −1            0   0 −1    0   0  0    
 [Y1, Y2]   =     0   0   1     0   0   0     −     0   0   0    0   0  1    
                                 0 −1   0     1   0   0            1   0   0    0 −1  0     
 
                          =  −Y3  , 
 
 [Y1, Y3]   =   Y2  , 
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and 
 
 [Y2, Y3]   =  −Y1 . 
 
 These relations define the algebra of the Y’s.  In general, we have 
 
     [Yj, Yk]  =  ± Yl = εjkl Yl , 
 
where εjkl is the anti-symmetric Levi-Civita symbol.  It is equal to +1 if jkl is an 

even permutation, −1 if jkl is an odd permutation, and it is equal to zero if two 

indices are the same. 

 Motivated by the relationship between Lz and X in 2-dimensions, we 

introduce the operators 

       Jk = −i(2π/h)Yk , k = 1, 2, 3. 

Their commutators are obtained from those of the Y’s, for example 

      [Y1, Y2] = −Y3 →  [2πiJ1/h, 2πiJ2/h] = −2πiJ3/h 

or 

    −[J1, J2](2π/h)2 = −2πiJ3/h 

and therefore 

         [J1, J2] = ihJ3/2π . 

These operators obey the general commutation relation 

          [Jj, Jk] = ihεjkl Jl /2π . 

The angular momentum operators form a “Lie Algebra”. 
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 The basic algebraic properties of the angular momentum operators in 

Quantum Mechanics stem directly from this relation. 

 Another approach involves the use of the differential operators in 3-

dimensions.  A point P[x, y, z] transforms under an infinitesimal rotation of the 

coordinates as follows 

                P´[x´, y´, z´]  =  R c(δµ, δθ, δφ]P[x, y, z] 

Substituting the infinitesimal form of R c in this equation gives 

            δx = x´ − x =            yδφ − zδθ 

            δy = y´ − y =  −xδφ         + zδµ 

             δz = z´ − z =   xδθ − yδµ . 

Introducing the classical angular momentum operators: Li
cl, we find that  

 
these small changes can be written 
              3 
            δxi  =  ∑ δαk Xkxi   
             k = 1 

For example, if i = 1 
 
             δx1 = δx  =   δµ(z∂/∂y  −  y∂/∂z)x 
 
                     + δθ(-z∂/∂x  +  x∂/∂z)x 
 
                     + δφ(y∂/∂x  −  x∂/∂y)x   =  −zδθ  +  yδφ . 
 
 Extending  Lie’s method to three dimensions, the infinitesimal form  
 
of the rotation operator is readily shown to be 
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             3 

  R c(δµ, δθ, δφ)  =  I  +  ∑ (∂R c/∂αi)| ⋅ δαi .     
                                                 i = 1                           All αi’s = 0     

7 

LIE’S CONTINUOUS TRANSFORMATION GROUPS 

 In the previous chapter, we discussed the properties of infinitesimal 

rotations in 2- and 3-dimensions, and we found that they are related directly 

to the angular momentum operators of Quantum Mechanics.  Important  

algebraic properties of the matrix representations of the operators also were 

introduced.  In this chapter, we shall consider the subject in general terms. 

 Let xi, i = 1 to n be a set of n variables.  They may be considered to be 

the coordinates of a point in an n-dimensional vector space, Vn.  A set of 

equations involving the xi’s is obtained by the transformations 

     xi´  =  fi(x1, x2, ...xn: a1, a2, ....ar), i = 1 to n 

in which the set a1, a2, ...ar contains r-independent parameters.  The set Ta, of 

transformations maps x → x´.  We shall write 

             x´  =  f(x; a) or x´  =  Tax 

for the set of functions. 

 It is assumed that the functions fi are differentiable with respect to the 

x’s and the a’s to any required order.  These functions necessarily depend on 

the essential parameters, a.  This means that no two transformations with 
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different numbers of parameters are the same.  r is the smallest number 

required to characterize the transformation, completely. 

 The set of functions fi forms a finite continuous group if: 

1.  The result of two successive transformations x → x´ → x´´ is equivalent 

to a single transformation x → x´´: 

      x´  =  f(x´; b)  =  f(f(x; a); b) 

           =  f(x; c) 

           =  f(x; χ(a; b)) 

where c is the set of parameters 

       cλ  =  χλ (a; b) ,  λ = 1 to r, 

and 

2.  To every transformation there corresponds a unique inverse that belongs 

to the set: 

  ∃ a such that x = f(x´; a) = f(x´; a) 

 We have 

      TaTa
-1  =  Ta

-1Ta  =  I, the identity. 

We shall see that 1) is a highly restrictive requirement. 

 The transformation x = f(x; a0) is the identity.  Without loss of 

generality, we can take a0 = 0.  The essential point of Lie’s theory of 

continuous transformation groups is to consider that part of the group that is 
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close to the identity, and not to consider the group as a whole.  Successive 

infinitesimal changes can be used to build up the finite change. 

7.1 One-parameter groups 

 Consider the transformation x → x´ under a finite change in a single 

parameter a, and then a change x´ + dx´.  There are two paths from x  → x´ + 

dx´; they are as shown: 

      x´ 
 an “infinitesimal” 
         δa 
            a, a finite parameter change 
 
        x´ + dx´ 
        a + da 
     a “differential” 
                   x (a = 0) 
 
We have 

     x´ + dx´ = f(x; a + da) 

         = f(f(x; a); δa) = f(x´; δa) 

The 1st-order Taylor expansion is  

    dx´ = ∂f(x´; a)/∂a  δa ≡ u(x´) δa  
                                                                   a = 0   
The Lie group conditions then demand 

        a + da = χ(a; δa). 

But 

        χ(a; 0) = a,  (b = 0) 
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therefore 

        a + da = a + ∂χ(a; b)/∂b  δa 
                             b = 0 
so that 
      da = ∂χ(a; b)/∂b  δa  
                                                                   b = 0 
or 
 
      δa = A(a)da. 

Therefore 

     dx´ = u(x´)A(a)da, 

leading to 

    dx´/u(x´)  =  A(a)da 

so that 
   x´                    a 

         ∫ dx´/u(x´)  = ∫A(a)da  ≡ s, (s = 0 → the identity).  
         x                     0  
We therefore obtain 

         U(x´) − U(x) = s. 

A transformation of coordinates (new variables) therefore transfers all 

elements of the group by the same transformation: a one-parameter group is 

equivalent to a group of translations. 

 Two continuous transformation groups are said to be similar when they 

can be obtained from one another by a change of variable. For example, 

consider the group defined by 
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                  x1´         a   0     x1 
                  x2´   =    0   a2    x2   
 
The identity coprresponds to a = 1.  The infinitesimal transformation is 

therefore 

                  x1´        (1 + δa)          0        x1 
                  x2´   =       0         (1 + δa)2    x2  .    
 
To 1st-order in δa we have 

          x1´  =  x1 + x1δa 
 
and 
 
          x2´  =  x2 + 2x2δa 
 
or 
 
          δx1  =  x1δa 
 
and 
 
          δx2  =  2x2δa. 
 
In the limit, these equations give 
 
       dx1/x1  =  dx2/2x2  =  da. 
 
These are the differential equations that correspond to the infinitesimal 

equations above. 

Integrating, we have 
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    x1´                a                 x2´                     a 

  ∫ dx1/x1   =  ∫ da  and     ∫ dx2/2x2   =   ∫  da , 
          x1                 0                  x2                     0 

 
so that 
 
       lnx1´  −  lnx1  =  a  =  ln(x1´/x1) 
 
and 
 
            ln(x2´/x2)  =  2a  =  2ln(x1´/x1) 
 
or 
 
   U´  =  (x2´/x1´2)  =  U  =  (x2/x1

2) . 
 
Putting V  =  lnx1, we obtain 
 
   V´  =  V  +  a   and U´ =  U, the translation group. 
 
7.2  Determination of the finite equations from the infinitesimal 
 
forms 
 
 Let the finite equations of a one-parameter group G(1) be 
 
            x1´  =  φ(x1, x2 ; a) 
 
and 
 
            x2´  =  ψ(x1, x2 ; a), 
 
and let the identity correspond to a = 0. 
 
We consider the transformation of f(x1, x2) to f(x1´, x2´).  We expand   
 
f(x1´, x2´) in a Maclaurin series in the parameter a (at definite values of x1  
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and x2): 
 
       f(x1´, x2´)  =  f(0)  +  f´(0)a  +  f´´(0)a2/2!  +  … 
 
where 
 
       f(0)  =  f(x1´, x2´)| a=0  =  f(x1, x2),  
 
and 
 
      f´(0)  =  (df(x1´, x2´)/da| a=0 
 
              ={(∂f/∂x1´)(dx1´/da)  +  (∂f/∂x2´)(dx2´/da)}| a=0  
 
              ={(∂f/∂x1´)u(x1´, x2´)  +  (∂f/∂x2´)v(x1´, x2´)}|a=0  
 
therefore 
 
              f´(0)  = {(u(∂/∂x1)  +  v(∂/∂x2))f}| a=0  
 
                       =  Xf(x1, x2). 
Continuing in this way, we have 
 
 f´´(0)  = {d2f(x1´, x2´)/da2}|a=0  =  X2f(x1, x2), etc.... 
 
The function f(x1´, x2´) can be expanded in the series 
 
               f(x1´, x2´)  =  f(0)  +  af´(0)  +  (a2/2!)f´´(0)  + ... 
 
                       = f(x1, x2)  +  aXf  +  (a2/2!)X2f  +  ... 
 
Xnf is the symbol for operating n-times in succession of f with X. 
 
The finite equations of the group are therefore 
 
                 x1´  =  x1  +  aXx1  + (a2/2!)X2x1  +  ... 
 
and 
                 x2´  =  x2  +  aXx2  + (a2/2!)X2x2  +   =  ... 
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If x1 and x2 are definite values to which x1´and x2´ reduce for the identity 

a=0, then these equations are the series solutions of the differential equations 

         dx1´/u(x1´, x2´)  =  dx2´/v(x1´, x2´)  =  da. 

The group is referred to as the group Xf. 

For example, let 
 
                   Xf = (x1∂/∂x1  +  x2∂/∂x2)f 
 
then 
 
                 x1´  =  x1  +  aXx1  + (a2/2!)X2f ... 
 
                        = x1  +  a(x1∂/∂x1  + x2∂/∂x2)x1  + ... 
 
                        = x1  +ax1  +  (a2/2!)(x1∂/∂x1  +  x2∂/∂x2)x1  +  
 
                        = x1  +  ax1  +  (a2/2!)x1  +  ... 
 
                        =x1(1  +  a  +  a2/2!  +  ...) 
 
                        = x1ea. 
 
Also, we find 
 
                          x2´  =  x2ea. 
 
Putting b = ea, we have 
 
                 x1´  =  bx1, and x2´  = bx2. 
 
The finite group is the group of magnifications. 

If X = (x∂/∂y  − y∂/∂x) we find, for example, that the finite group is the 

group of 2-dimensional rotations. 
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7.3  Invariant functions of a group 

 Let 

            Xf = (u∂/∂x1  +  v∂/∂x2)f define a one-parameter 

group, and let a=0 give the identity.  A function F(x1, x2) is termed an 

invariant under the transformation group G(1) if 

        F(x1´, x2´)  =  F(x1, x2) 

for all values of the parameter, a. 

 The function F(x1´, x2´) can be expanded as a series in a: 

  F(x1´, x2´) = F(x1, x2)  +  aXF  +  (a2/2!)X(XF)  +  ... 

If 

         F(x1´, x2´)  =  F(x1, x2)  =  invariant for all values of a, 

it is necessary for 

   XF  =  0, 

and this means that 

 {u(x1, x2)∂/∂x1  +  v(x1, x2)∂/∂x2}F  =  0. 

Consequently, 

           F(x1, x2)  =  constant 

is a solution of 

      dx1/u(x1, x2)  =  dx2/v(x1, x2) . 
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This equation has one solution that depends on one arbitrary constant, and 

therefore G(1) has only one basic invariant, and all other possible invariants 

can be given in terms of the basic invariant. 

For example, we now reconsider the the invariants of rotations: 

 The infinitesimal transformations are given by 

            Xf  =  (x1∂/∂x2  −  x2∂/∂x1), 

and the differential equation that gives the invariant function F of the group 

is obtained by solving the characteristic differential equations  

        dx1/x2  =  dφ, and dx2/x1  =  −dφ, 

so that 

  dx1/x2  +  dx2/x1  =  0. 

The solution of this equation is  

           x1
2  +  x2

2  = constant,  

and therefore the invariant function is 

     F(x1, x2)  =  x1
2  +  x2

2. 

All functions of x1
2  +  x2

2 are therefore invariants of the 2-dimensional 

rotation group. 

 This method can be generalized.  A group G(1) in n-variables defined 

by the equation  

  xi´ = φ(x1, x2, x3, ...xn; a), i  =  1 to n, 
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is equivalent to a unique infinitesimal transformation 

        Xf  =  u1(x1, x2, x3, ...xn)∂f/∂x1  +  ...un(x1, x2, x3, ...xn)∂f/∂xn . 

If a is the group parameter then the infinitesimal transformation is 

        xi´  =  xi  +  ui(x1, x2, ...xn)δa  (i  =  1 to n), 

then, if E(x1, x2, ...xn) is a function that can be differentiated n-times with 

respect to its arguments, we have 

         E(x1´, x2´, ...xn´)  =  E(x1, x2, ...xn)  +  aXE  +  (a2/2!)X2E  + . 

Let (x1, x2, ...xn) be the coordinates of a point in n-space and let a be a 

parameter, independent of the xi’s.  As a varies, the point (x1, x2, ...xn) will 

describe a trajectory, starting from the initial point (x1, x2, ...xn).  A necessary 

and sufficient condition that F(x1, x2, ...xn) be an invariant function is that XF 

= 0.  A curve F = 0 is a trajectory and therefore an invariant curve if 

    XF(x1, x2, x3, ...xn)  =  0. 

8 

  PROPERTIES OF n-VARIABLE, r-PARAMETER LIE GROUPS 

 The change of an n-variable function F(x) produced by the  
 
infinitesimal transformations associated with r-essential parameters is:  
                n  
             dF = ∑ (∂F/∂xi)dxi  
            i = 1 
where  
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                  r 
     dxi = ∑ uiλ(x)δaλ , the Lie form. 
             λ = 1 
The parameters are independent of the xi’s therefore we can write 
                r          n 
      dF =  ∑ δaλ{∑ uiλ(x)(∂/∂xi)F} 
              λ = 1         i = 1 
                r 
           =  ∑ δaλ Xλ F 
              λ = 1 
where the infinitesimal generators of the group are 
                                                      n 
       Xλ ≡  ∑ uiλ(x)(∂/∂xi) , λ= 1 to r. 
      i = 1 
The operator 
        r 
         I  +  ∑ Xλδaλ 
      λ = 1 
differs infinitesimally from the identity. 
 
The generators Xλ have algebraic properties of basic importance in the Theory 

of Lie Groups.  The Xλ’s are differential operators.  The problem is therefore 

one of obtaining the algebraic structure of differential operators.  This problem 

has its origin in the work of Poisson (1807); he introduced the following ideas: 

 The two expressions 
 
  X1f  =  (u11∂/∂x1  +  u12∂/∂x2)f 
and 
  X2f  =  (u21∂/∂x1  +  u22∂/∂x2)f 
 
where the coefficients uiλ are functions of the variables x1, x2, and f(x1, x2)  
 
is an arbitrary differentiable function of the two variables, are termed  
 
linear differential operators. 
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The “product” in the order X2 followed by X1 is defined as 
 
 X1X2f  =  (u11∂/∂x1  +  u12∂/∂x2)(u21∂f/∂x1  +  u22∂f/∂x2) 
 
The product in the reverse order is defined as 
 
 X2X1f  =  (u21∂/∂x1  +  u22∂/∂x2)(u11∂f/∂x1  +  u12∂f/∂x2). 
 
The difference is 
 
 X1X2f  −  X2X1f  =    X1u21∂f/∂x1  +  X1u22∂f/∂x2 
 
      − X2u11∂f/∂x1  −  X2u12∂f/∂x2. 
 
                            =  (X1u21  −  X2u11)∂f/∂x1  +  (X1u22  −  X2u12)∂f/∂x2 
 
          ≡  [X1, X2]f. 
 
This quantity is called the Poisson operator or the commutator of the  
 
operators X1f and X2f. 
 
The method can be generalized to include λ = 1 to r essential parameters  
 
and i = 1 to n variables.  The ath-linear operator is then 
 
    Xa  =  uia∂f/∂xi  
     n 
          =  ∑ uia∂f/∂xi , ( a sum over repeated indices). 
    i = 1 

Lie’s differential equations have the form 
       ∂xi/∂aλ  =  uik(x)Akλ(a) , i = 1 to n, λ = 1 to r. 
 
Lie showed that 
 
        (∂ckτσ/∂aρ)uik  =  0 
 
in which 
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        ujσ∂uiτ/∂xj  −  ujτ∂uiσ/∂xj  = ckτσ(a)uik(x), 
 
so that the ckτσ’s are constants.  Furthermore, the commutators can be  
 
written 
 
            [Xρ, Xσ]  = ( ckρσujk)∂/∂xj 
 
                  = ckρσXk.  
 
The commutators are linear combinations of the Xk’s.  (Recall the earlier  
 
discussion of the angular momentum operators and their commutators). 
 
The ckρσ’s are called the structure constants of the group.  They have the  
 
properties 
 
                          ckρσ  =  −ckσρ ,  
 
    cµρσcνµτ  +  cµστcνµρ  +  cµτρcνµσ  =  0. 
 
Lie made the remarkable discovery that, given these structure constants,  
 
the functions that satisfy  
 
                     ∂xi/∂aλ  =  uikAkλ(a) can be found. 
 
(Proofs of all the above important statements, together with proofs of  
 
Lie’s three fundamental theorems, are given in Eisenhart’s standard work 
 
 Continuous Groups of Transformations, Dover Publications, 1961). 
 
8.1  The rank of a group 
 
 Let A be an operator that is a linear combination of the generators  
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of a group, Xi: 
 
            A  =  αiXi  (sum over i), 
 
and let 
            X  =  xjXj . 
 
The rank of the group is defined as the minimum number of commuting,  
 
linearly independent operators of the form A. 
 
We therefore require all solutions of 
 
       [A, X] = 0. 
 For example, consider the orthogonal group, O+(3); here 
 
             A  =  αiXi  i = 1 to 3, 
and 
             X  =  xjXj  j = 1 to 3 
so that 
       [A, X]  = αixj[Xi, Xj] i, j = 1 to 3 
 
          = αixjεijkXk . 
 
The elements of the sets of generators are linearly independent, therefore 
 
                 αixjεijk  = 0 (sum over i, j,, k = 1, 2, 3) 
 
This equation represents the equations 
 
    −α2   α1  0          x1          0   
     α3   0  −α2      x2   =   0   . 
     0   −α3  α2         x3            0   
 
The determinant of α  is zero, therefore a non-trivial solution of the xj’s  
 
exists.  The solution is given by 
 
                    xj  =  αj  (j = 1, 2, 3) 
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so that 
 
           A  =  X . 
 
O+(3) is a group of rank one. 
 
8.2  The Casimir operator of O+(3) 
 
The generators of the rotation group O+(3) are the operators. Yk’s,  
 
discussed previously.  They are directly related to the angular momentum  
 
operators, Jk: 
 
        Jk  =  -i(h/2π)Yk (k = 1, 2, 3). 
 
The matrix representations of the Yk’s are 
 
                 0   0   0                    0   0 −1                     0   1   0   
   Y1  =      0   0   1  ,   Y2   =     0   0   0  ,   Y3  =     −1   0   0  . 
                 0  −1  0                    1   0   0                     0   0   0    
 
The square of the total angular momentum, J is 
             3 
   J2  =  ∑ Ji

2  
             1 
        = (h/2π)2 (Y1

2 + Y2
2 + Y3

2) 
 
        = (h/2π)2(-2I). 
 
Schur’s lemma states that an operator that is a constant multiple of I  
 
commutes with all matrix irreps of a group, so that  
 
     [Jk, J2]  =  0  , k = 1,2 ,3. 
 
The operator J2 with this property is called the Casimir operator of the 
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 group O+(3). 
 
 In general, the set of operators {Ci} in which the elements commute with 

the elements of the set of irreps of a given group, forms the set of Casimir 

operators of the group.  All Casimir operators are constant multiples of the unit 

matrix: 

     Ci  =  aiI; the constants ai are characteristic of a 

particular representation of a group. 

9 
 

MATRIX REPRESENTATIONS OF GROUPS 

 Matrix representations of linear operators are important in Linear 

Algebra; we shall see that they are equally important in Group Theory.  

 If a group of m × m matrices 

          Dn
(m)  =  {D1

(m)(g1),...Dk
(m)(gk), ...Dn

(m)(gn)}  

can be found in which each element is associated with the corresponding 

element gk of a group of order n 

             Gn  =  {g1,...gk,....gn}, 

and the matrices obey 

           Dj
(m)(gj)Di

(m)(gi)  =  Dji
(m)(gjgi), 

and 

     D1
(m)(g1)  =  I, the identity, 
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then the matrices Dk
(m)(gk) are said to form an m-dimensional representation 

of Gn.  If the association is one-to-one we have an isomorphism and the 

representation is said to be faithful.   

 The subject of Group Representations forms a very large branch of 

Group Theory.  There are many standard works on this topic (see the 

bibliography), each one containing numerous definitions, lemmas and 

theorems.  Here, a rather brief account is given of some of the more 

important results.  The reader should delve into the deeper aspects of the 

subject as the need arises.  The subject will be introduced by considering 

representations of the rotation groups, and their corresponding cyclic groups. 

9.1  The 3-dimensional representation of rotations in the plane 

 The rotation of a vector through an angle φ in the plane is 

characterized by the 2 x 2 matrix 

 
       cosφ   −sinφ  
       R v(φ)  =                        . 
       sinφ     cosφ   
 
 The group of symmetry transformations that leaves an equilateral 

triangle invariant under rotations in the plane is of order three, and each 

element of the group is of dimension two 
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 Gn ~ R 3
(2)  = {R (0), R (2π/3), R(4π/3)} 

 
         = {  1   0 ,  −1/2   −√3/2  ,  −1/2   √3/2  }. 
                0   1      √3/2   −1/2     −√3/2  −1/2   
 
         ≈  {123, 312, 231}  =  C3. 
 
These matrices form a 2-dimensional representation of C3 . 
 
 A 3-dimensional representation of C3 can be obtained as follows: 
 
 Consider an equilateral triangle located in the plane and let the  
 
coordinates of the three vertices P1[x, y], P2[x´, y´], and P3[x´´, y´´] be 

written as a 3-vector P13  =  [P1, P2, P3], in normal order.  We introduce    3 × 

3 matrix operators Di
(3) that change the order of the elements of P13, 

cyclically.  The identity is 

                   P13  =  D1
(3)P13, where D1

(3)  =  diag(1, 1, 1). 

The rearrangement 

                   P13 →  P23[P3, P1, P2] is given by 

           P23  =  D2
(3)P13, 

where 
 
 
               0  0  1 
          D2

(3)  =   1  0  0  , 
               0  1  0   
 
and the rearrangement 
 
            P13 → P33[P2, P3, P1] is given by 
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            P33  =  D3

(3)P13 
 
where 
 
       0  1  0   
          D3

(3)  =   0  0  1  . 
       1  0  0   
 
The set of matrices {Di

(3)}  =  {D1
(3), D2

(3), D3
(3)} is said to form a 3-

dimensional representation of the original 2-dimensional representation 

{R 3
(2)}.  The elements Di

(3) have the same group multiplication table as that 

associated with C3.  

9.2  The m-dimensional representation of symmetry  

 transformations in d-dimensions 

 Consider the case in which a group of order n 

             Gn  =  {g1, g2, ...gk, ...gn} 

is represented by  

          R n
(m) =  {R 1

(m), R 2
(m), .....R n

(m) 

where 

           R n
(m) ~  Gn, 

and R k
(m) is an m × m matrix representation of gk.  Let P1d be a vector in d-

dimensional space, written in normal order: 

           P1d  =  [P1, P2, ...Pd], 
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and let 

         P 1m  =  [P1d, P2d, ....Pmd] 

be an m-vector, written in normal order, in which the components are each d-

vectors.  Introduce the m × m matrix operator Dk
(m)(gk) such that 

         P 1m  =  D1
(m)(g1)P1m 

         P 2m  =  D2
(m)(g2)P 1m 

          . 

          . 

         P km  =  Dk
(m)(gk)P 1m , k = 1 to m, the number of       

          symmetry operations, 

where P km is the kth (cyclic) permutation of P 1m , and Dk
(m)(gk)  is called the 

“m-dimensional representation of gk”. 

 Infinitely many representations of a given representation can be found, 

for, if S is a matrix representation, and M is any definite matrix with an 

inverse, we can form T(x)  =  MS(x)M-1, ∀ x ∈ G.  Since 

 T(xy)  =  MS(xy)M-1  =  MS(x)S(y)M-1  =  MS(x)M-1MS(y)M-1 

        =  T(x)T(y), 

T is a representation of G.  The new representation simply involves a change 

of variable in the corresponding substitutions.  Representations related in the 
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manner of S and T are equivalent, and are not regarded as different 

representations.  All representations that are equivalent to S are equivalent to 

each other, and they form an infinite class.  Two equivalent representations 

will be written S ~ T. 

9.3  Direct sums 

 If S is a representation of dimension s, and T is a representation of  
 
dimension t of a group G, the matrix 
 
                        S(g)     0      
                     P  =                      ,  (g ∈ G) 
                        0      T(g)    
 
of dimension s + t is called the direct sum of the matrices S(g) and T(g),  
 
written P = S ⊕ T.  Therefore, given two representations (they can be the  
 
same), we can obtain a third by adding them directly.  Alternatively, let P  
 
be a representation of dimension s + t; we suppose that, for all x ∈ G, the  
 
matrix P(x) is of the form 
 
               A(x)     0 
 
                0       B(x)  
    
where A(x) and B(x) are s × s and t × t matrices, respectively.  (The 0’s are s 

× t and t × s zero matrices).  Define the matrices S and T as follows: 

          S(x)  ≡  A(x) and T(x)  ≡  B(x), ∀ x ∈ G. 

Since, by the group property, P(xy)  =  P(x)P(y), 
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    A(xy)       0               A(x)     0      A(y)     0      
          = 
    0         B(xy)             0       B(x)     0       B(y)    
 
         A(x)A(y)             0 
          =         . 
             0               B(x)B(y) 
 
Therefore, S(xy)  =  S(x)S(y) and T(xy)  =  T(x)T(y), so that S and T are 

representations.  The representation P is said to be decomposable, with 

components S and T.  A representation is indecomposable if it cannot be 

decomposed. 

 If a component of a decomposable representation is itself 

decomposable, we can continue in this manner to decompose any 

representation into a finite number of indecomposable components.  (It 

should be noted that the property of indecomposablity depends on the field 

of the representation; the real field must sometimes be extended to the 

complex field to check for indecomposability).  

 A weaker form of decomposability arises when we consider a  
 
matrix of the form 
 
       A(x)    0 
         P(x)  =             
       E(x)    B(x) 
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where A(x), and B(x) are matrices of dimensions s × s and t × t respectively 

and E(x) is a matrix that depends on x, and 0 is the s × t zero matrix.  The 

matrix P, and any equivalent form, is said to be reducible.  An irreducible 

representation is one that cannot be reduced.  Every decomposable matrix is 

reducible (E(x) = 0), whereas a reducible representation need not be 

decomposable. 

 If S and T are reducible, we can continue in this way to obtain a set of 

irreducible components.  The components are determined uniquely, up to an 

equivalence.  The set of distinct irreducible representations of a finite group 

is (in a given field) an invariant of the group.  The components form the 

building blocks of a representation of a group. 

 In Physics, decomposable representations are generally referred to as 

reducible representations (reps). 

9.4  Similarity and unitary transformations and matrix diagonalization 

 Before discussing the question of the possibility of reducing the 

dimension of a given representation, it will be useful to consider some 

important results in the Theory of Matrices.  The proofs of these statements 

are given in the standard works on Matrix Theory.  (See bibliography). 

 If there exists a matrix Q such that  

   Q–1AQ  =  B , 



 98 

then the matrices A and B are related by a similarity transformation. 

 If Q is unitary (QQ†  =  I: Q†  =  (Q*)T , the hermitian conjugate) then 

A and B are related by a unitary transformation. 

 If A´  =  Q–1AQ; B´  =  Q–1BQ; C´  =  Q–1CQ.. then any algebraic 

relation among A, B, C...is also satisfied by A´, B´, C´ ... 

 If a similarity transformation produces a diagonal matrix then the 

process is called diagonalization. 

 If A and B can be diagonalized by the same matrix then A and B 

commute. 

 If V is formed from the eigenvectors of A then the similarity 

transformation V–1AV will produce a diagonal matrix whose elements are the 

eigenvalues of A. 

 If A is hermitian then V will be unitary and therefore an hermitian 

matrix can always be diagonalized by a unitary transformation.  A real 

symmetric matrix can always be diagonalized by an orthogonal 

transformation. 

9.5  The Schur-Auerbach theorem 

 This theorem states 

 Every matrix representation of a finite group is equivalent to a unitary 

matrix representation 
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 Let Gn = {D1, D2, ....Dn} be a matrix group, and let D be the matrix  
 
formed by taking the sum of pairs of elements 
              n 
             D  =  ∑ DiDi

† 
            i = 1 
where Di

† is the hermitian conjugate of Di. 

Since Di is non-singular, each term in the sum is positive definite.  Therefore 

D itself is positive definite.  Let Ld be a diagonal matrix that is equivalent to 

D, and let Ld
1/2 be the positive definite matrix formed by replacing the 

elements of Ld by their positive square roots.  Let U be a unitary matrix with 

the property that  

     Ld  =  UDU-1.  

 Introduce the matrix  

               S  =  Ld
-1/2U, 

 then SDiS-1 is unitary.  (This property can be demonstrated by considering 

(SDiS-1)(SDiS-1)†, and showing that it is equal to the identity).  S will 

transform the original matrix representation Gn into diagonal form.  Every 

unitary matrix is diagonalizable, and therefore every matrix in every finite 

matrix representation can be diagonalized. 

9.6  Schur’s lemmas 

 A matrix representation is reducible if every element of the 

representation can be put in block-diagonal form by a single similarity 
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transformation.  Invoking the result of the previous section, we need only 

discuss unitary representations.   

 If Gn  =  {D(ν)(R)} is an irreducible representation of dimension ν of a 

group Gn, and {D(µ)(R)} is an irreducible representation of dimension µ of 

the same group, Gn, and if there exists a matrix A such that 

    D(ν)(R)A  =  AD(µ)(R)  ∀ R ∈ Gn 

then either  

 i) A = 0 

or 

 ii) A is a square non-singular matrix (so that ν = µ) 

 Let the µ columns of A be written c1, c2, ...cµ, then, for any matrices  
 
D(ν) and D(µ) we have 
 
         D(ν)A  =  (D(ν)c1, D(ν)c2, ...D(ν)cn) 
 
an 
         µ                µ                  µ 
         AD(µ)  =  ( ∑ D(µ)

k1ck, ∑ D(µ)
k2ck, ...∑D(µ)

kµck). 
       k = 1            k = 1               k = 1 
therefore      µ 
          D(ν)cj  =  ∑ D(µ)

kjck  
      k = 1 
 
and therefore the µ c-vectors span a space that is invariant under the 

irreducible set of ν-dimensional matrices {D(ν)}.  The c-vectors are therefore 
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the null-vector or they span a ν-dimensional vector space.  The first case 

corresponds to A = 0, and the second to µ ≥ ν and A ≠ 0. 

 In the second case, the hermitian conjugates D(ν)
1

†, ...D(ν)
n

† and D(µ)
1

†, 

...D(µ)
n

† also are irreducible .  Furthermore, since D(ν)
i(R)A  =  AD(µ)

i(R) 

   D(µ)
i
†A†  =  A†D(ν)

i
† , 

and therefore, following the method above, we find that ν ≥ µ.  We must 

therefore have ν = µ, so that A is square..  Since the ν-columns of A span a 

ν-dimensional space, the matrix A is necessarily non-singular.     

As a corollary, a matrix D that commutes with an irreducible set of matrices 

must be a scalar matrix. 

9.7  Characters 

 If D(ν)(R) and D(µ)(R) are related by a similarity transformation then 

D(ν)(R) gives a representation of G that is equivalent to D(µ)(R).  These two 

sets of matrices are generally different, whereas their structure is the same.  

We wish, therefore, to answer the question: what intrinsic properties of the 

matrix representations are invariant under coordinate transformations? 

 Consider 

  ∑ [CD(R)C-1]ii  =  ∑ CikDkl(R)Cli
-1 

   i   ikl  
         =  ∑ δklDkl(R) 
             kl   
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          =  ∑ Dkk(R) , the trace of D(R). 
      k     
We see that the trace, or character, is an invariant under a change of  
 
coordinate axes.  We write the character as 
 
         χ(R)  =  ∑ Dii(R) 
               i   
 Equivalent representations have the same set of characters.  The 
 
 character of R in the representation µ is written 
 
       χ(µ)(R) or [µ; R]. 
 
Now, the conjugate elements of G have the form S = URU-1, and then  
 
     D(R) = D(U)D(R)[D(R)]-1 

 
therefore 
 
          χ(S) = χ(R). 
 
We can describe G by giving its characters in a particular representation;  
 
all elements in a class have the same χ.   
 

10 

SOME LIE GROUPS OF TRANSFORMATIONS 

 We shall consider those Lie groups that can be described by a finite set 

of continuously varying essential parameters a1,...ar: 

            xi´  =  fi(x1,...xn; a1,...ar)  =  f(x; a) . 

A set of parameters a exists that is associated with the inverse 

transformations: 
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              x  = f(x´; a). 

These equations must be solvable to give the xi’s in terms of the xi´’s. 

10.1  Linear groups 

 The general linear group GL(n) in n-dimensions is given by the set  
 
of equations 
              n   
            xi´  =  ∑ aijxj , i = 1 to n, 
            j = 1   
in which det |aij| ≠ 0. 

The group contains n2 parameters that have values covering an infinite range.  

The group GL(n) is said to be not closed. 

 All linear groups with n > 1 are non-abelian.  The group GL(n) is 

isomorphic to the group of n × n matrices; the law of composition is 

therefore matrix multiplication. 

 The special linear group of transformations SL(n) in n-dimensions is 

obtained from GL(n) by imposing the condition det| aij | = 1.  A functional 

relation therefore exists among the n2 - parameters so that the number of 

required parameters is reduced to (n2 − 1). 

10.2  Orthogonal groups 

 If the transformations of the general linear group GL(n) are such that 
                   n 
          ∑ xi

2 → invariant , 
                  i = 1 
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then the restricted group is called the orthogonal group, O(n), in n-

dimensions.  There are [n + n(n - 1)/2] conditions imposed on the n2 

parameters of GL(n), and therefore there are n(n - 1)/2 essential parameters 

of O(n).  

 For example, in three dimensions 

       x´  =  Ox ; O ≡ { O3×3: OOT = I, detO = 1, aij ∈ R} 

where 
 
               a11  a12  a13    
             O  =    a21  a22  a23   . 
       a31  a32  a33    
 
We have 

  x1´2 +x2´2 + x3´2  =  x1
2 +x2

2 +x3
2 → invariant under O(3). 

This invariance imposes six conditions on the original nine parameters, and 

therefore O(3) is a three-parameter group. 

10.3  Unitary groups 

 If the xi’s and the aij’s of the general linear group GL(n) are complex, 

and the transformations are required to leave xx† invariant in the complex 

space, then we obtain the unitary group U(n) in n-dimensions: 

         U(n)  ≡  { Un×n: UU† = I, detU ≠ 0, uij ∈ C}. 
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There are 2n2 independent real parameters (the real and imaginary parts of 

the aij’s), and the unitary condition imposes n + n(n−1) conditions on them so 

the group has n2 real parameters.  The unitary condition means that 

       ∑j |aij|2  =  1,  

and therefore 

           |aij|2  ≤ 1 for all i, j. 

The parameters are limited to a finite range of values, and therefore the 

group U(n) is said to be closed. 

10.4  Special unitary groups 

 If we impose the restriction detU = +1 on the unitary group U(n), we 

obtain the special unitary group SU(n) in n-dimensions: 

   SU(n)  ≡  {Un×n: UU† = I, detU = +1, uij ∈ C}. 

The determinantal condition reduces the number of required real parameters 

to (n2 − 1). SU(2) and SU(3) are important in Modern Physics. 

10.5  The group SU(2), the infinitesimal form of SU(2), and the  
 
Pauli spin matrices 
 
 The special unitary group in 2-dimensions, SU(2), is defined as 

         SU(2)  ≡  {U2×2: UU† = I, detU = +1, uij ∈ C}. 

It is a three-parameter group. 
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 The defining conditions can be used to obtain the matrix representation 

in its simplest form; let 

               a   b    
    U  =               
                        c   d    
where a, b, c, d ∈ C. 

The hermitian conjugate is  

                        a*   c*   
           U†  =                 , 
               b*   d* 
and therefore 

                          |a|2 + |b|2      ac* + bd*     
         UU†  =                 . 
                a*c + b*d      |c|2 + |d|2       
The unitary condition gives 

           |a|2 + |b|2  =  |c|2 + |d|2  =  1,  

and the determinantal condition gives 

            ad  -  bc  =  1. 

Solving these equations , we obtain 

     c = -b*, and d = a*. 

 The general form of SU(2) is therefore 

                a     b      
             U =                 . 
                       −b*  a*    
 
 We now study the infinitesimal form of SU(2); it must have the  
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structure 
 
       1   0         δa     δb           1 + δa     δb 
    Uinf  =            +                    =                            . 
        0   1       −δb*  δa*       −δb*   1 + δa*  
 
The determinantal condition therefore gives 
 
        detUinf  =  (1 + δa)(1 + δa*) +δbδb*  =  1. 
 
To first order in the δ’s, we obtain 
 
       1 + δa* + δa  =  1, 
 
or 
                      δa  =  −δa*. 
 
so that 
 
                            1 + δa     δb 
                    Uinf  =                               . 
                           −δb*    1 − δa    
 
 The matrix elements can be written in their complex forms: 
 
              δa = iδα/2 , δb = δβ/2 + iδγ/2. 
 
(The factor of two has been introduced for later convenience). 
 
          1 + iδα/2      δβ/2 + iδγ/2 
            Uinf  =              . 
        −δβ/2 + iδγ/2     1 − iδα/2    
 
Now, any 2×2 matrix can be written as a linear combination of the 
 
Matrices 
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  1   0      0   1      0 −i      1   0   
           ,           ,            ,            .    
                    0   1     1   0       i   0      0 −1  
 
as follows 
 
  a   b            1   0           0   1           0 −i          1   0    
                    =   A            + B           + C           + D           , 
  c   d            0   1           1   0           i   0          0 −1   
 
where 
  a = A + D, b = B -iC, c = B + iC, and d = A - D. 
 
We then have 
 
   a   b    (a + d)  1   0      (b + c)   0  1     i(b − c) 0 −i       (a − d) 1   0 
            =                      +                       +                      +                       . 
   c  d         2       0   1         2       1   0          2      i   0           2      0 −1   
 
 The infinitesimal form of SU(2) can therefore be written 
 
                    Uinf  =    I   +  (iδγ/2)σ 1   +   (iδβ/2)σ 2   +  (iδα/2)σ 3 , 
or 
            Uinf  =  I  +  (i/2)∑ δτj σ j . j = 1 to 3. 
This is the Lie form. 
 
The σ j’s are the Pauli spin-matrices:; they are the generators of the group  
 
SU(2): 
 
                     0  1             0 −i              1  0   
           σ 1 =          , σ 2 =           , σ 3  =          . 
                     1  0             i   0              0 −1   
 
They play a fundamental role in the description of spin-1/2 particles in  
 
Quantum Mechanics. (See later discussions). 
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10.6  Commutators of the spin matrices and structure constants 
 
 We have previously introduced the commutators of the infinitesimal 

generators of a Lie group in connection with their Lie Algebra.  In this 

section, we consider the commutators of the generators of SU(2); they are 

found to have the symmetric forms 

     [σ 1, σ 2]  =   2iσ 3,  [σ 2, σ 1]  = −2iσ 3,  

     [σ 1, σ 3]  =  -2iσ 2, [σ 3, σ 1]  =    2iσ 2, 

     [σ 2, σ 3]  =   2iσ 1,  [σ 3, σ 2]  =  −2iσ 1. 

 We see that the commutator of any pair of the three matrices gives a 

constant multiplied by the value of the remaining matrix, thus 

     [σ j, σ k]  = εjk2iσ   .  

where the quantity εjk = ±1, depending on the permutations of the indices.  

(ε(xy)z  =  +1, ε(yx)z  =  −1 ..etc...). 

The quantities 2iεjk are the structure constants associated with the group.  

Other properties of the spin matrices are found to be 

 σ 1
2  =  σ 2

2  =  σ 3
2  =  I; σ 1σ 2  = iσ 3, σ 2σ 3  =  iσ 1, σ 3σ 1  =  iσ 2. 

10.7  Homomorphism of SU(2) and O+(3) 

 We can form the matrix 

      P  =  xTσ   =  xjσ j, j = 1, 2, 3 

from the matrices 
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       x  =  [x1, x2, x3] and σ   =  [σ 1, σ 2, σ 3] : 

therefore 
 
            x3         x1 − ix2     
    P     =                                 . 
         x1 + ix2        -x3     
 
We see that 
 
                    x3         x1 − ix2    
                   P†  =  (P*)T =                                 =  P, 
                  x1 + ix2        −x3      
 
so that P is hermitian. 
 
Furthermore, 
 
            TrP  =  0, 
and 
 
            detP  =  −(x1

2 + x2
2 + x3

2). 
 
 Another matrix, P´, can be formed by carrying out a similarity  
 
transformation, thus 
 
        P´  =  UPU†, (U ∈ SU(2)). 
 
A similarity transformation leaves both the trace and the determinant 
 
unchanged, therefore 
 
       TrP  =  TrP´,  
and 
      detP  =  detP´. 
 
However, the condition    detP  = detP´  means that 
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        xxT  =  x´x´T, 
or 
         x1

2 + x2
2 + x3

2  =  x1´2 + x2´2 + x3´2  . 
 
The transformation P´ = UPU† is therefore equivalent to a three- 
 
dimensional orthogonal transformation that leaves xxT invariant. 
 
10.8  Irreducible representations of SU(2) 
 
 We have seen that the basic form of the 2×2 matrix representation of 
 
 the group SU(2) is 
 
                          a    b     
      U  =                 , a, b ∈ C; |a|2  + |b|2 =1. 
                −b*  a*   
 
 Let the basis vectors of this space be 
 
     1                 0     
    x1 =        and x2 =      . 
     0                 1    
 
We then have 
                 a   
          x1´  =  Ux1 =           =  ax1  −  b*x2 , 
               −b*   
and 
                 b     
          x2´  =  Ux2 =           =  bx1  +  a*x2 , 
                 a*   
and therefore 
      x´  =  Utx. 
 
If we write a 2-dimensional vector in this complex space as c = [u, v]  
 
then the components transform under SU(2) as 
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      u´  =  au  +  bv   
 
and 
 
       v´  =  b*u  +  a*v , 
 
and therefore 
 
      c´  =  Uc . 
 
 We see that the components of the vector c transform differently  
 
from those of the basis vector x — the transformation matrices are the  
 
transposes of each other.  The vector c = [u, v] in this complex space is  
 
called a spinor (Cartan, 1913). 
 
 To find an irreducible representation of SU(2) in a 3-dimensional  
 
space, we need a set of three linearly independent basis functions.  
 
Following Wigner (see bibliography), we can choose the polynomials 
 
   u2, uv, and v2, 
 
and introduce the polynomials defined by 
                    1 + m   1 – m 
               j = 1                u       v       
                f      =                              
                m          √ {(1 + m)! (1 + m)!}  
  
where 
 
             j = n/2 (the dimension of the space is n + 1) . 
 
and 
 
            m = j, j − 1, ... −j . 
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In the present case, n = 2, j = 1, and m = 0, ±1. 
 
(The factor 1/√{(1 + m)! (1 − m)!} is chosen to make the representative  
 
matrix unitary). 
 
 We have, therefore 
 
  f1

1 = u2/√2 , f0
1 = uv, and f-1

1 = v2/√2. 
 
A 3×3 representation of an element U ∈ SU(2) in this space can be found  
 
by defining the transformation 
 
          Ufm

1(u, v) = fm
1(u´, v´). 

We then obtain 
 
          Ufm

1(u, v) =  (au + bv)1 + m(-b*u + a*v)1 - m  , m = 0, ±1,   
                  √{(1 + m)!(1 − m)!}  
 
so that 
 
         Uf1

1(u, v) = (au + bv)2/√ 2 
 
                        = (a2u2 + 2abuv + b2v2)/√ 2   , 
 
         Uf0

1(u, v) = (au + bv)(−b*u + a*v) 
 
                        = -ab*u2 + (|a|2 − |b|2)uv + a*bv2 , 
and 
 
         Uf-1

1(u, v) = (−b*u + a*v)2/√ 2  
 
                         = (b*2u2 − 2a*b*uv + a*2v2)/√2 . 
 
We then have 
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  a2       √2ab         b2            f1

1         f1
1´    

       −√2ab*  |a|2 − |b|2   √2a*b     f0
1    =   f0

1´    
  b*2    −√2a*b*     a*2         f-1

1        f-1
1´  

or 
          UF  = F´. 
 
We find that UU † = I and therefore U is, indeed, unitary. 
 
This procedure can be generalized to an (n + 1)-dimensional space as 
 
follows 
 
Let 
 
             fm

j(u, v) =                uj + mvj - m        , m = j, j − 1, ...−j. 
                  √{(j + m)!(j − m)!}  
 
(Note that j = n/2 = 1/2, 1/1, 3/2, 2/1, ..). 

For a given value of j, there are 2j + 1 linearly independent polynomials, and 

therefore we can form a (2j + 1) × (2j + 1) representative matrix of an 

element U of SU(2): 

   Ufm
j(u, v)  =  fm

j(u´, v´). 

The details of this general case are given in Wigner’s classic text.  He 

demonstrates the irreducibility of the (2j + 1)-dimensional representation by 

showing that any matrix M which commutes with Uj for all a, b such that |a|2 

+ |b|2 = 1 must necessarily be a constant matrix, and therefore, by Schur’s 

lemma, Uj is an irreducible representation. 

10.9  Representations of rotations and the concept of tensors 
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 We have discussed 2- and 3-dimensional representations of the 

orthogonal group O(3) and their connection to angular momentum operators.  

Higher-dimensional representations of the orthogonal group can be obtained 

by considering a 2-index quantity , Tij — a tensor — that consists of a set of 

9 elements that transform under a rotation of the coordinates as follows: 

 Tij → Tij´  =  RiRjmTm (sum over repeated indices 1, 2, 3). 

If Tij = Tji (Tij is symmetric), then this symmetry is an invariant under 

rotations; we have 

 Tji´  =  RjRimTm  =  RjmRiTm  =  RiRjmTm  =  Tij´ . 

If TrTij  =  0, then so is TrTij´, for 

 Tii´  =  RiRimTm  =  (RTR)mTm  =  δmTm  =  T  =  0. 

 The components of a symmetric traceless 2-index tensor contains 5 

members so that the transformation Tij → Tij´ = RiRjmTm defines a new 

representation of them of dimension 5.  

 Any tensor Tij can be written 

  Tij  =  (Tij + Tji)/2 + (Tij − Tji)/2 , 

and we have 

  Tij  =  (Tij + Tji)/2 = (Tij − (δijT)/3) + (δijT)/3 . 
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The decomposition of the tensor Tij gives any 2-index tensor in terms of a 

sum of a single component, proportional to the identity, a set of 3 

independent quantities combined in an anti-symmetric tensor (Tij − Tji)/2, and 

a set of 5 independent components of a symmetric traceless tensor.  We write 

the dimensional equation 

       9 = 1 ⊕ 3 ⊕ 5 . 

This is as far as it is possible to go in the process of decomposition: no other 

subsets of 2-index tensors can be found that preserve their identities under 

the defining transformation of the coordinates.  Representations with no 

subsets of tensors that preserve their identities under the defining rotations 

of tensors are irreducible representations.  

 We shall see that the decomposition of tensor products into symmetric 

and anti-symmetric parts is important in the Quark Model of elementary 

particles. 

 The representations of the orthogonal group O(3) are found to be 

important in defining the intrinsic spin of a particle.  The dynamics of a 

particle of finite mass can always be descibed in its rest frame (all inertial 

frames are equivalent!), and therefore the particle can be characterized by 

rotations.  All known particles have dynamical states that can be described  



 117 

in terms of the tensors of some irreducible representation of O(3).  If the 

dimension of the irrep is (2j + 1) then the particle spin is found to be 

proportional to j.  In Particle Physics, irreps with values of j = 0, 1, 2,... and 

with j = 1/2, 3/2, ... are found that correspond to the fundamental bosons and 

fermions, respectively. 

 The three dimensional orthogonal group SO(3) (det = +1) and the two 

dimensional group SU(2) have the same Lie algebra.  In the case of the group 

SU(2), the (2j + 1)-dimensional representations are allowed for both integer 

and half -integer values of j, whereas, the representations of the group SO(3) 

are limited to integer values of j.  Since all the representations are allowed in 

SU(2), it is called the covering group.  We note that rotations through φ and 

φ + 2π have different effects on the 1/2-integer representations, and therefore 

they are (spinor) transformations associated with SU(2).  

 

11 

THE GROUP STRUCTURE OF LORENTZ TRANSFORMATIONS 

 The square of the invariant interval s, between the origin [0, 0, 0, 0] of 

a spacetime coordinate system and an arbitrary event xµ = [x0, x1, x2, x3] is, in 

index notation 

                              s2 = xµxµ = x´µx´µ , (sum over µ = 0, 1, 2, 3). 
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The lower indices can be raised using the metric tensor 

                              ηµν = diag(1, –1, –1, –1), 

 so that 

                          s2 = ηµνxµxν = ηµνx´µx´v , (sum over µ and ν). 

The vectors now have contravariant forms. 

 In matrix notation, the invariant is 

                              s2 = xTηx = x´Tηx´ . 

(The transpose must be written explicitly). 

The primed and unprimed column matrices (contravariant vectors) are related 

by the Lorentz matrix operator, L 

                                               x´ = Lx . 

We therefore have 

                                    xTηx = (Lx)Tη (Lx) 

                                            = xTLTηLx . 

The x’s are arbitrary, therefore 

                                   LTηL = η . 

This is the defining property of the Lorentz transformations. 

 The set of all Lorentz transformations is the set L  of all 4 × 4 matrices 

that satisfies the defining property 

                       L  = {L: LTηL = η ; L: all 4 × 4 real matrices;  
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                  η  = diag(1, –1, –1, –1}. 

(Note that each L  has 16 (independent) real matrix elements, and therefore 

belongs to the 16-dimensional space, R16). 

11.1  The group structure of L  

 Consider the result of two successive Lorentz transformations L1 and 

L2 that transform a 4-vector x as follows 

                              x → x´ → x´´ 

where 

                        x´ = L1x , 

and 

                      x´´  = L2x´. 

The resultant vector x´´ is given by 

                       x´´ = L2(L1x) 

                              = L2L1x  

                             = Lcx  

where 

                        Lc = L2L1 (L1 followed by L2). 

If the combined operation Lc is always a Lorentz transformation then it must 

satisfy 

                                Lc
TηLc = η  . 
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We must therefore have 

                      (L2L1)Tη (L2L1) = η  

or 

                        L1
T(L2

TηL2)L1 = η  

so that 

                                 L1
TηL1 = η ,    (L1, L2 ∈ L) 

therefore  

                                Lc = L2L1 ∈ L . 

Any number of successive Lorentz transformations may be carried out to 

give a resultant that is itself a Lorentz transformation. 

 If we take the determinant of the defining equation of L,  

                            det(LTηL) = detη  

we obtain 

                        (detL)2 = 1  (detL = detLT) 

so that  

                           detL = ±1. 

 Since the determinant of L is not zero, an inverse transformation L–1 exists, 

and the equation L–1L = I, the identity, is always valid. 

 Consider the inverse of the defining equation 

                              (LTηL)–1 = η –1 , 



 121 

or 

                 L–1η –1(LT)–1 = η –1 . 

Using η  = η –1, and rearranging, gives 

                   L–1η (L–1)T = η  . 

This result shows that the inverse L–1 is always a member of the set L . 

 We therefore see that  

 1. If L1 and L2 ∈ L  , then L2 L1 ∈ L  

 2. If L ∈ L  , then L–1 ∈ L  

 3. The identity I = diag(1, 1, 1, 1) ∈ L  

and  

 4. The matrix operators L obey associativity. 

The set of all Lorentz transformations therefore forms a group. 

11.2  The rotation group, revisited 

 Spatial rotations in two and three dimensions are Lorentz 

transformations in which the time-component remains unchanged. 

 Let R  be a real 3×3 matrix that is part of a Lorentz transformation  
 
with a constant time-component.  In this case, the defining property of the 

Lorentz transformations leads to 

         RTR  = I , the identity matrix, diag(1,1,1). 

This is the defining property of a three-dimensional orthogonal matrix 
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 If x = [x1, x2, x3] is a three-vector that is transformed under R  to give 

x´ then 

                           x´Tx´ = xTRTRx 

                                    = xTx = x1
2 + x2

2 + x3
2  

                                                   = invariant under R . 

The action of R  on any three-vector preserves length.  The set of all 3×3 

orthogonal matrices is denoted by O(3), 

                    O(3) = {R : RTR  = I, rij ∈ R}. 

The elements of this set satisfy the four group axioms. 

 The group O(3) can be split into two parts that are said to be 

disconnected:: one with detR = +1 and the other with detR = -1.  The two 

parts are written 

                 O+(3)  =  {R: detR = +1} 

and 

                  O-(3)  =  {R: detR = -1} . 

 If we define the parity operator , P, to be the operator that reflects all 

points in a 3-dimensional cartesian system through the origin then 
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                           −1   0   0     
                          P  =     0 −1   0  . 
                                      0   0 −1    
 
The two parts of O(3) are related by the operator P: 
 
 if R ∈ O+(3) then PR ∈ O-(3), 
and 
 if R´ ∈ O-(3) then PR´ ∈ O+(3). 
 
We can therefore consider only that part of O(3) that is a group, namely 
 
O+(3), together with the operator P. 
 
11.3  Connected and disconnected parts of the Lorentz group 
 
 We have shown, previously, that every Lorentz transformation, L, has 

a determinant equal to ±1.  The matrix elements of L change continuously as 

the relative velocity changes continuously.  It is not possible, however, to 

move continuously in such a way that we can go from the set of 

transformations with detL = +1 to those with detL = -1; we say that the set 

{L: detL = +1} is disconnected from the set {L: detL = −1}. 

 If we write the Lorentz transformation in its component form 

    L → Lµ
ν 

where µ = 0,1,2,3 labels the rows, and ν = 0,1,2,3 labels the columns then the 

time component L0
0 has the values 

   L0
0 ≥ +1 or L0

0 ≤ −1. 
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 The set of transformations can therefore be split into four disconnected 

parts, labelled as follows: 

       {L↑
+} = {L: detL = +1, L0

0 ≥ +1} 

       {L↑
–} = {L: detL = −1, L0

0 ≥ +1} 

       {L↓
+} = {L: detL = +1, L0

0 ≤ −1}, 

and 

          {L↓
–} = {L: detL = −1, L0

0 ≤ -1}. 

The identity is in {L↑
+}. 

11.4  Parity, time-reversal and orthochronous transformations 

 Two discrete Lorentz transformations are 

 i) the parity transformation 

               P = {P: r → −r, t → t} 

                  = diag(1, −1, −1, −1), 

and 

 ii) the time-reversal transformation 

               T = {T: r → r, t → -t} 

                  = diag(−1, 1, 1, 1}. 

 The disconnected parts of {L} are related by the transformations that 

involve P, T, and PT, as shown: 
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             PT 
       L↑

+                                            L↓
- 

 
 
     P   T 
 
 
       L↑

-                                             L↓
- 

 
 
Connections between the disconnected parts of Lorentz transformations  
 
 The proper orthochronous transformations are in the group L↑

+.  We 

see that it is not necessary to consider the complete set {L} of Lorentz 

transformations — we need consider only that subset {L↑
+} that forms a 

group by itself, and either P, T, or PT combined.  Experiments have shown 

clear violations under the parity transformation, P and violations under T 

have been inferred from experiment and theory, combined.  However, not a 

single experiment has been carried out that shows a violation of the proper 

orthochronous transformations, {L↑
+}. 

12 

ISOSPIN 

 Particles can be distinguished from one another by their intrinsic 

properties: mass, charge, spin, parity, and their electric and magnetic 

moments. In our on-going quest for an understanding of the true nature of the 
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fundamental particles, and their interactions, other intrinsic properties, with 

names such as “isospin” and “strangeness”, have been discovered.  The 

intrinsic properties are defined by quantum numbers; for example, the 

quantum number a is defined by the eigenvalue equation 

            Aφ  =  a φ 

where A is a linear operator, φ is the wavefunction of the system in the zero-

momentum frame, and a is an eigenvalue of A.   

 In this chapter, we shall discuss the first of these new properties to be 

introduced, namely, isospin. 

 The building blocks of nuclei are protons (positively charged) and 

neutrons (neutral).  Numerous experiments on the scattering of protons by 

protons, and protons by neutrons, have shown that the nuclear forces 

between pairs have the same strength, provided the angular momentum and 

spin states are the same.  These observations form the basis of an important 

concept — the charge-independence of the nucleon-nucleon force.  

(Corrections for the coulomb effects in proton-proton scattering must be 

made).  The origin of this concept is found in a new symmetry principle.  In 

1932, Chadwick not only identified the neutron in studying the interaction of 

alpha-particles on beryllium nuclei but also showed that its mass is almost 

equal to the mass of the proton.  (Recent measurements give 
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    mass of proton = 938⋅27231(28) MeV/c2  

and 

    mass of neutron = 939⋅56563(28) MeV/c2)  

Within a few months of Chadwick’s discovery, Heisenberg introduced a 

theory of nuclear forces in which he considered the neutron and the proton to 

be two “states” of the same object — the nucleon.  He introduced an intrinsic 

variable, later called isospin, that permits the charge states (+, 0) of the 

nucleons to be distinguished.  This new variable is needed (in addition to the 

traditional space-spin variables) in the description of nucleon-nucleon 

scattering. 

 In nuclei, protons and neutrons behave in a remarkably symmetrical 

way: the binding energy of a nucleus is closely proportional to the number of 

neutrons and protons, and in light nuclei (mass number <40), the number of 

neutrons can be equal to the number of protons. 

 Before discussing the isospin of particles and nuclei, it is necessary to 

introduce an extended Pauli Exclusion Principle.  In its original form, the 

Pauli Exclusion Principle was introduced to account for features in the 

observed spectra of atoms that could not be understood using the then current 

models of atomic structure: 
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 no two electrons in an atom can exist in the same quantum state defined by 

the quantum numbers n, , m, ms where n is the principal quantum number, 

 is the orbital angular momentum quantum number, m is the magnetic 

quantum number, and ms is the spin quantum number.   

 For a system of N particles, the complete wavefunction is written as a 

product of single-particle wavefunctions 

      Ψ(1, 2, ...N)  =  ψ(1)ψ(2)...ψ(N). 

Consider this form in the simplest case — for two identical particles.  Let 

one be in a state labeled Ψa and the other in a state Ψb.  For identical 

particles, it makes no difference to the probability density |Ψ|2 of the 2-

particle system if the particles are exchanged: 

   |Ψ(1, 2)|2  =  |Ψ(2, 1)|2, (the Ψ’s are not measurable) 

so that, either  

      Ψ(2, 1)  =  Ψ(1, 2)  (symmetric) 

or  

      Ψ(2, 1)  = −Ψ(1, 2)  (anti-symmetric). 

Let  

            ΨI  =  ψa(1)ψb(2)  (1 an a, 2 in b) 

and 
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           ΨII  =  ψa(2)ψ(1)  (2 in a, 1 in b). 

The two particles are indistinguishable, therefore we have no way of 

knowing whether ΨI or ΨII describes the system; we postulate that the system 

spends 50% of its time in ΨI and 50% of its time in ΨII.  The two-particle 

system is considered to be a linear combination of ΨI and ΨII: 

We have, therefore, either 

                    Ψsymm   =  (1/√2){ψa(1)ψb(2) + ψa(2)ψb(1)} (BOSONS) 

or 

                    Ψantisymm = (1/√2){ψa(1)ψb(2) − ψa(2)ψb(1)} (FERMIONS) . 

(The coefficient (1/√2) normalizes the sum of the squares to be 1). 

Exchanging 1↔ 2 leaves Ψsymm unchanged, whereas exchanging particles   

1↔ 2 reverses the sign of Ψantisymm . 

If two particles are in ΨS, both particles can exist in the same state with     a 

= b.  If two particles are in ΨAS , and a = b, we have ΨAS = 0 — they cannot 

exist in the same quantum state.  Electrons (fermions, spin = (1/2)) are 

described by anti-symmetric wavefunctions. 

 We can now introduce a more general Pauli Exclusion Principle.  

Write the nucleon wavefunction as a product: 

   Ψ(χ, q)  =  ψ(χ)φN(q) , 

where 
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           χ  =  χ(r, s) 

 in which r is the space vector, s is the spin, and q is a charge or isospin 

label.  

 For two nucleons, we write 

          Ψ(χ1, q1; χ2, q2), 

for two protons: 

           Ψ2p  = ψ1(χ1, χ2)φN(p1)φN(p2), 

for two neutrons: 

           Ψ2n  =  ψ2(χ1, χ2)φN(n1)φN(n2), 

and for an n-p pair: 

           Ψnp  = ψ3(χ1, χ2)φN(p1)φN(n2) 

or 

                  = ψ4(χ1, χ2)φN(n1)φN(p2). 

If we regard the proton and neutron as different states of the same object, 

labeled by the “charge or isospin coordinate”, q, we must extend the Pauli 

principle to cover the new coordinate: the total wavefunction is then 

  Ψ(χ1, q1; χ2, q2)  =  −Ψ(χ2, q2; χ1, q1) . 

It must be anti-symmetric under the full exchange. 

For a 2p- or a 2n-pair, the exchange q1↔ q2 is symmetrical, and therefore the 

space-spin part must be anti-symmetrical. 
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 For an n-p pair, the symmetric (S) and anti-symmetric (AS) “isospin” 

wavefunctions are 

 I) ΦS  =  (1/√2){φN(p1)φN(n2) + φN(n1)φN(p2)} 

    (symmetric under q1 ↔ q2), 

and therefore the space-spin part is anti-symmetrical, 

 II) ΦAS  =  (1/√2){φN(p1)φN(n2) − φN(n1)φN(p2)} 

    (anti-symmetric under q1 ↔ q2), 

and therefore the space-spin part is symmetrical. 

We shall need these results in later discussions of the symmetric and anti-

symmetric properties of quark systems. 

12.1  Nuclear β -decay 

 Nuclei are bound states of neutrons and protons.  If the number of 

protons in a nucleus is Z and the number of neutrons is N then the mass 

number of the nucleus is A = N + Z.  Some nuclei are naturally unstable.  A 

possible mode of decay is by the emission of an electron (this is β-decay — a 

process that typifies the fundamental “weak interaction”). 

We write the decay as 

         A
ZXN  →  A

Z+1XN-1 + e–1 + νe  (β–-decay) 

or, we can have 

           A
ZXN →  A

Z-1XN-1 + e+ + νe  (β+ - decay). 
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A related process is that of electron capture of an orbital electron that is 

sufficiently close to the positively charged nucleus: 

    e– + A
ZXN  →  A

Z+1XN+1 + νe. 

Other related processes are  

   νe + A
ZXN  →   A

Z-1XN-1 + e+ 

and 

    νe + A
ZXN  →  A

Z+1XN-1 + e– . 

The decay of the free proton has not been observed at the present time.  The 

experimental limit on the half-life of the proton is > 1031 years!  Many 

current theories of the microstructure of matter predict that the proton 

decays.  If, however, the life-time is > 1032 - 1033 years then there is no 

realistic possibility of observing the decay directly (The limit is set by 

Avogadro’s number and the finite number of protons that can be assembled 

in a suitable experimental apparatus). 

 The fundamental β-decay is that of the free neutron, first observed in 

1946.  The process is 

     n0 →  p+ + e– + νe
0 , t1/2 = 10⋅37 ± 0⋅19 minutes. 

This measured life-time is of fundamental importance in Particle Physics and 

in Cosmology. 
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Let us set up an algebraic description of the β-decay process, recognizing 

that we have a 2-state system in which the transformation p ↔ n occurs: 

 In the β–-decay of a free neutron 

             n  →  p+ + e– + νe,  

and in the β+-decay of a proton, bound in a nucleus, 

            p  → n + e+ + νe  . 

 

12.2  Isospin of the nucleon 

 The spontaneous transformations p↔ n observed in β-decay lead us to 

introduce the operators τ ± that transform p ↔ n: 

         τ+φn  =  φp ,  τ+φp  =  0, (eliminates a proton) 

and 

          τ -φp  =  φn ,  τ -φn  =  0, (eliminates a neutron). 

Since we are dealing with a two-state system, we choose the “isospin” 
 
parts of the proton and neutron wavefunctions to be  
 
               1         0 
          φ(p)  =        and  φ(n)  =      , 
               0          1   
 
in which case the operators must have the forms: 
 
                0   1                  0   0   
              τ+  =            and τ - =            . 
                0   0                  1   0   
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They are singular and non-hermitian. 
 
We have, for example 
 
                0   1    0         1   
          τ+φn  =                    =      , φn  →  φp,          
                0   0    1         0   
 
and 
 
 
                0   1    1        0   
           τ+φp  =                  =      (τ+ removes a proton). 
                0   0    0        0   
 
To make the present algebraic description analogous to the two-state 
 
 system of the intrinsic spin of the electron, we introduce linear 
 
combinations of the τ ± : 
 
       0   1   
     τ 1  =  τ+  +  τ -  =            =  σ 1, a Pauli matrix, 
       1   0 
 
and 
 
 
       0  −i   
    τ 2  = i(τ -  −  τ+) =              =  σ 2, a Pauli matrix. 
        i   0      
 
A third operator that is diagonal is, as expected 
 
       1   0    
      τ 3  =             =  σ 3, a Pauli matrix. 
       0   1    
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 The three operators {τ 1, τ 2, τ 3} therefore obey the commutation 

relations 

         [τ j/2, τ k/2]  = iεjkτ /2 , 

where the factor of(1/2) is introduced because of the 2:1 homomorphism 

between SU(2) and O+(3): the vector operator 

              t  =  τ /2 

is called the isospin operator of the nucleon. 

 To classify the isospin states of the nucleon we may use the projection 

of t on the 3rd axis, t3.  The eigenvalues, t3, of t3 correspond to the proton (t3 

= +1/2) and neutron (t3 = −1/2) states.  The nucleon is said to be an isospin 

doublet with isospin quantum number t = 1/2.  (The number of states in the 

multiplet is 2t + 1 = 2 for t = 1/2). 

 The charge, QN of the nucleon can be written in terms of the isospin 

quantum numbers: 

             QN  =  q(t3 +(1/2))  =  q or 0, 

where q is the proton charge.  (It is one of the great unsolved problems of 

Particle Physics to understand why the charge on the proton is equal to the 

charge on the electron). 
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12.3  Isospin in nuclei. 

 The concept of isospin, and of rotations in isospin space, associated 

with individual nucleons can be applied to nuclei — systems of many 

nucleons in a bound state.   

 Let the isospin of the ith-nucleon be ti, and let ti = τ i /2.  The operator 

of a system of A nucleons is defined as 

              T  =  ∑A
i=1 ti  =  ∑A

i=1 τ i/2 . 

The eigenvalue of T3 of the isospin operator T3 is the sum of the individual 

components 

                     T3  =  ∑A
i=1 t3i  =  ∑A

i=1 τ3i/2  

          = (Z – N)/2 . 

 The charge, QN of a nucleus can be written 

    QN  =  q∑A
i=1 (τ3i + 1)/2  

                 = q(T3 + A/2) . 

For a given eigenvalue T of the operator T, the state is (2T + 1)-fold 

degenerate.  The eigenvalues T3 of T3 are 

     T3  =  −T, −T + 1,...0,...T + 1, T . 

If the Hamiltonian H of the nucleus is charge-independent then 

      [H, T]  =  0. 
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and T is said to be a good quantum number.  In light nuclei, where the 

isospin-violating coulomb interaction between pairs of protons is a small 

effect, the concept of isospin is particularly useful.  The study of isospin 

effects in nuclei was first applied to the observed properties of the lowest-

lying states in the three nuclei with mass number A = 14: 14C, 14N, and 14O.  

The relative energies of the states are shown in the following diagram: 

 Energy (MeV) 
 
 
              6 
         0+  T = 1, T3 = 1 
 
 
              4 
 
                  0+   T = 1, T3 = 0 
 
              2 
 
 
                             0+   T = 1, T3 = −1            1+   T = 0, T3 = 0   
               0 
 
 An isospin singlet (T = 0) and an isospin triplet (T = 1) in  
 
 the A = 14 system.  In the absence of the coulomb interaction, the three  
 
 T = 1 states would be degenerate.   
 
The spin and parity of the ground state of 14C, the first excited state of 14N 

and the ground state of 14O are measured to be 0+; these three states are 

characterized by T = 1.  The ground state of 14N has spin and parity 1+; it is 

an isospin singlet (T = 0). 
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12.4  Isospin and mesons 

 We have seen that it is possible to classify the charge states of 

nucleons and nuclear isobars using the concept of isospin, and the algebra of 

SU(2).  It will be useful to classify other particles, including field particles 

(quanta) in terms of their isospin.   

 Yukawa (1935), first proposed that the strong nuclear force between a 

pair of nucleons is carried by massive field particles called mesons.   

Yukawa’s method was a masterful development of the theory of the 

electromagnetic field to include the case of a massive field particle.  If ψπ is 

the “meson wavefunction” then the Yukawa differential equation for the 

meson is 

    ∂µ∂µ ψπ + (E0/c)2ψπ  =  0. 

where  

           ∂µ∂µ  =  (1/c2)∂2/∂t2 − ∇2 . 

The r-dependent (spatial) form of ∇2 is 

             ∇2 → (1/r2)d/dr(r2d/dr) 

The static (time-independent) solution of this equation is readily checked to 

be 

          Ψ(r)  =  (−g2/r)exp(−r/rN) 

where 
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   rN = /mπc = c/mπc2 = c/Eπ
0,  

so that  

                   1/rN
2  =  (Eπ

0/c)2 

The “range of the nuclear force” is defined by the condition 

        r  =  rN  =  /mπc ≈ 2 ×10-13 cm. 

This gives the mass of the meson to be close to the measured value.  It is 

important to note that the “range of the force” ∝ 1/(mass of the field 

quantum).  In the case of the electromagnetic field, the mass of the field 

quantum (the photon) is zero, and therefore the force has an infinite range.   

 The mesons come in three charge states: +, −, and 0.  The mesons have 

intrinsic spins equal to zero (they are field particles and therefore they are 

bosons), and their rest energies are measured to be 

            Eπ±
0  =  139⋅5 MeV, and Eπ0

0  =  135⋅6 MeV. 

They are therefore considered to be members of an isospin triplet: 

                t  = 1, t3  = ±1, 0. 

In Particle Physics, it is the custom to designate the isospin quantum number 

by I, we shall follow this convention from now on. 

 The third component of the isospin is an additive quantum number.  

The combined values of the isospin projections of the two particles, one with 

isospin projection I3
(1) , and the other with I3

(2), is 
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         I3
(1+2)  =  I3

(1)  +  I3
(2) . 

Their isospins combine to give states with different numbers in each 

multiplet.  For example, in pion (meson)-nucleon scattering 

              π  +  N → states with I3
(1 + 2) = (3/2) or (1/2). 

These values are obtained by noting that 

            Iπ(1) = 1, and IN
(2) = 1/2, so that 

        I3π
(1) + I3N

(2)  =  (±1, 0)  +  (±1/2) 

          = (3/2), an isospin quartet, or (1/2), an isospin 

doublet. 

Symbolically , we write 

         3 ⊗ 2  =  4 ⊕ 2. 

(This is the rule for forming the product (2I3
(1) + 1)⊗(2I3

(2) + 1). 

13 

GROUPS AND THE STRUCTURE OF MATTER 

13.1  Strangeness 

 In the early 1950’s, our understanding of the ultimate structure of 

matter seemed to be complete.  We required neutrons, protons, electrons and 

neutrinos, and mesons and photons.  Our optimism was short-lived.  By 

1953, excited states of the nucleons, and more massive mesons, had been 

discovered.  Some of the new particles had completely unexpected 
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properties; for example, in the interaction between protons and π-mesons 

(pions) the following decay mode was observed: 

 
 
 
                       Proton (p+)   
                                                              Sigma (∑+)                          Pion (π0 ) 
 
        ❊       Kaon (K+)               ❊   
                                    Pion (π+) 
                    
 
                       Pion (π+) 
                                            ⇑                                              ⇑   
   Initial interaction                              Final decay  
          lasts ~10-23 seconds                       takes ~10-10 seconds 
 
         (Strong force acting)                     (Weak force acting) 
 
 
Gell-Mann, and independently Nishijima, proposed that the kaons (heavy 

mesons) were endowed with a new intrinsic property not affected by the 

strong force.  Gell-Mann called this property “strangeness”.  Strangeness is 

conserved in the strong interactions but changes in the weak interactions.  

The Gell-Mann - Nishijima interpretation of the strangeness-changing 

involved in the proton-pion interaction is 
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         p+ (S = 0)        ∑+ (S = –1) 
               π0 (S = 0) 
 
      ❊          K+ (S = +1)   ❊ 
              π+ (S = 0) 
 
          π+ (S = 0) 
 
       ⇑       ⇑   
          ∆S = 0           ∆S = 1 
 
In the strong part of the interaction, there is no change in the number 

defining the strangeness, whereas in the weak part, the strangeness changes 

by one unit.  Having defined the values of S for the particles in this 

interaction, they are defined forever.  All subsequent experiments involving 

these objects have been consistent with the original assignments.   

13.2  Particle patterns 

 In 1961, Gell-Mann, and independently Ne’eman, introduced a scheme 

that classified the strongly interacting particles into family groups. They 

were concerned with the inclusion of “strangeness” in their theory, and 

therefore they studied the arrangements of particles in an abstract space 

defined by their electric charge and strangeness.  The common feature of 

each family was chosen to be their intrinsic spin; the family of spin-1/2 

baryons (strongly interacting particles) has eight members: n0, p+ ,∑±  ,∑0 ,Ξ– 

,Ξ0 , and Λ0 .  Their strangeness quantum numbers are: S = 0: n0, p+ ; S = –1: 
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∑± ,∑0 , and Λ0 ; and S = –2: Ξ0,– .  If the positions of these eight particles are 

given in charge-strangeness space, a remarkable pattern emerges: 

 

                          Strangeness, S 
           n0                                    p+                          ⇓ 
                    0 
 
 
 
                                                    Λ0 
           ∑–                                                                           ∑+          –1 
                                                    ∑0 
           
                                                                                     Charge  +1     
 
 
                   –2 
                                      Ξ–                                  Ξ0 
            Charge  –1                         Charge 0       
 
 
 There are two particles at the center, each with zero charge and zero 

strangeness; they are the ∑0 and the Λ0.  (They have different rest masses).  

 They studied the structure of other families.  A particularly important 

set of particles consists of all baryons with spin 3/2.  At the time, there were 

nine known particles in this category:  Δ0, ∆±1, ∆+2, ∑*0, ∑*±1, Ξ0, and Ξ-1 .  

They have the following pattern in charge-strangeness space: 
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            Charge: –1                 0                +1                +2      Strangeness 
               ⇓ 
               0 
             ∆-           ∆0            ∆+            ∆++ 
 
 
              –1 
         ∑*–              ∑*0               ∑+ 
 
 
 
              –2 
            Ξ*–             Ξ*0 
 
 
 
              –3 
                 Ω–  ? 
 
The symmetry pattern of the family of spin-3/2 baryons, shown by the known 

nine objects was sufficiently compelling for Gell-Mann, in 1962, to suggest 

that a tenth member of the family should exist.  Furthermore, if the symmetry 

has a physical basis, the tenth member should have spin-3/2, charge –1, 

strangeness –3, and its mass should be about 150MeV greater than the mass 

of the Ξ0 particle.  Two years after this suggestion, the tenth member of the 

family was identified in high-energy particle collisions; it decayed via weak 

interactions, and possessed the predicted properties.  This could not have 

been by chance.  The discovery of the Ω– particle was crucial in helping to 

establish the concept of the Gell-Mann – Ne’eman symmetry model.   
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 In addition to the symmetries of baryons, grouped by their spins, the 

model was used to obtain symmetries of mesons, also grouped by their spins.   

13.3  The special unitary group SU(3) and particle structure 

 Several years before the work of Gell-Mann and Ne’eman, Sakata  had 

attempted to build-up the known particles from {neutron- proton- lambda0} 

triplets.  The lambda particle was required to “carry the strangeness”.  

Although the model was shown not to be valid, Ikeda et al. (1959) introduced 

an important mathematical analysis of the three-state system that involved 

the group SU(3).  The notion that an underlying group structure of 

elementary particles might exist was popular in the early 1960’s.  (Special 

Unitary Groups were used by J. P. Elliott in the late 1950’s to describe 

symmetry properties of light nuclei).  

 The problem facing Particle Physicists, at the time, was to find the 

appropriate group and its fundamental representation, and to construct 

higher-dimensional representations that would account for the wide variety 

of symmetries observed in charge-strangeness space.  We have seen that the 

charge of a particle can be written in terms of its isospin, a concept that has 

its origin in the charge-independence of the nucleon-nucleon force.  When 

appropriate, we shall discuss the symmetry properties of particles in isospin-

strangeness space.    
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 Previously, we discussed the properties of the Lie group SU(2).  It is a 

group characterized by its three generators, the Pauli spin matrices.  Two-

state systems, such as the electron with its quantized spin-up and spin-down, 

and the isospin states of nucleons and nuclei, can be treated quantitatively 

using this group.  The symmetries of nucleon and meson families discovered 

by Gell-Mann and Ne’eman, implied an underlying structure of nucleons and 

mesons.  It could not be a structure simply associated with a two-state system 

because the observed particles were endowed not only with positive, 

negative, and zero charge but also with strangeness.  A three-state system 

was therefore considered necessary, at the very least; the most promising 

candidate was the group SU(3).  We shall discuss the infinitesimal form of 

this group, and we shall find a suitable set of generators.  

13.3.1  The algebra of SU(3)   

 The group of special unitary transformations in a 3-dimensional 

complex space is defined as 

        SU(3) ≡ {U3×3 : UU† = I, detU = +1, uij ∈ C}. 

The infinitesimal form of SU(3) is 

       SU(3)inf = I + iδαjλ j/2 , j = 1 to 8. 

(There are n2 − 1 = 8 generators). 
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The quantities δαj are real and infinitesimal, and the 3×3 matrices λ j are the 

linearly independent generators of the group.  The repeated index, j, means 

that a sum over j is taken. 

 The defining properties of the group restrict the form of the generators.  

For example, the unitary condition is 

           UU† = (I + iδαjλ j/2)(I – iδαjλ
†

j/2) 

          = I – iδαjλ j
†/2 + iδαjλ j/2 to 1st-order, 

          = I if λ j = λ j
†. 

The generators must be hermitian. 

The determinantal condition is 

             det = +1; and therefore Trλ j = 0. 

The generators must be traceless. 

 The finite form of U is obtained by exponentiation: 

               U = exp{iαjλ j/2}. 

 We can find a suitable set of 8 generators by extending the method 

used in our discussion of isospin, thus: 

 Let three fundamental states of the system be chosen in the simplest 

way, namely: 
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                   1             0                     0 

           u =   0  , v =    1  , and w =    0   . 

          0             0                     1 

If we wish to transform v → u, we can do so by defining the operator A+: 

        0   1   0     0       1    

       A+ v = u,    0   0   0     1  =   0  .  

        0   0   0     0       0    

We can introduce other operators that transform the states in pairs, thus 

                        0   0   0 

                      A– =   1   0   0   , 

                        0   0   0 

             0   0   0                 0   0   0    

  B+  =   0   0   1   , B– =     0   0   0 , 

             0   0   0                 0   1   0   

     0   0   0                0   0   1   

 C+  =    0   0   0  , C–  =    0   0   0  . 

     1   0   0                0   0   0   

These matrices are singular and non-hermitian.  In the discussion of isospin 

and the group SU(2), the non-singular, traceless, hermitian matrices τ 1, and 
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τ 2 are formed from the raising and lowering operators τ ± matrices by 

introducing the complex linear combinations 

     τ 1  =  τ+ + τ –  = σ 1 and τ 2  =  i(τ 1  –  τ 2)  = σ 2. 

The generators of SU(3) are formed from the operators A±, B±, C± by 

constructing complex linear combinations.  For example: 

the isospin operator τ 1 =  σ 1  =  τ+ + τ –, a generator of SU(2) becomes 

 
 
 
 
            0      
 
                                      σ 1     0   =  A+ + A– ≡ λ 1, a generator of SU(3). 

           0   0   0   

Continuing in this way, we obtain 

                        A+  =  λ 1/2  +  iλ 2/2 ,  

where  

                                       0  
            σ 2 
                λ 2  =               0  , 
   
                             0   0   0 

and 

 C+ + C–  =  λ 4,       C+ – C–  =  –iλ 5, 

 B+ + B–  =  λ 6  and B + – B–  =  iλ 7 . 
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The remaining generators, λ 3 and λ 8 are traceless, diagonal, 3×3 matrices: 
 
                  0                1    0   0    
 
    λ 3  =     σ 3      0  ,  λ 8  =   0    1   0   . 
 
                 0   0   0                0    0  −2   
 
The set of matrices {λ 1, .....λ 8} are called the Gell-Mann matrices, 

introduced in 1961.  They are normalized so that  

    Tr(λ jλ k)  =  2δjk. 

The normalized form of λ 8 is therefore 
 
                           1    0   0   
 
             λ 8  =  (1/√3)   0    1   0   . 
 
                            0   0  –2   
 
If we put Fi = λ i/2. we find 
 
     A± = F1 ± iF2 , 

     B± = F6 ± iF7,  

and  

     C± = F4 + iF5 . 

Let A3 = F3, B3 = –F3/2 + (√3/4)F8 , and C3 = (–1/2)F3 − (√3/4)F8., so that  

    A3 + B3 + C3 = 0. 
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The last condition means that only eight of the nine operators are 

independent. 

 The generators of the group are readily shown to obey the Lie 

commutation relations 

        [Fi, Fj] = ifijkFk , i,j,k = 1 to 8. 

where the quantities fijk are the non-zero structure constants of the group; 

they are found to obey  

       fijk = –fjik, 

 and the Jacobi identity. 

The commutation relations [Fi, Fj] can be written in terms of the operators 

A±, ...Some typical results are 

     [A+, A-] = 2A3, [A+, A3] = -A+,  [A-, A3] = +A-, 

     [A3, B3]   = 0,   [A3, C3]  = 0,    [B3, C3] = 0 

     [B+, B-]  = 2B3, [B+, B3]  = -B-,  [B-, B3] = +B-, etc. 

 The two diagonal operators commute: 

      [F3, F8] = 0 . 

Now, F1, F2, and F3 contain the 2×2 isospin operators (Pauli matrices), each 

with zeros in the third row and column; they obey the commutation relations 

of isospin.  We therefore make the identifications 

      F1 = I1, F2 = I2, and F3 = I3 
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where the Ij’s are the components of the isospin. 

 Particles that experience the strong nuclear interaction are called 

hadrons; they are separated into two sets: the baryons, with half-integer 

spins, and the mesons with zero or integer spins.  Particles that do not 

experience the strong interaction are called leptons.  In order to quantify the 

difference between baryons and leptons, it has been found necessary to 

introduce the baryon number B = +1 to denote a baryon, B = –1 to denote an 

anti-baryon and B = 0 for all other particles.  Leptons are characterized by 

the lepton number L = +1, anti-leptons are assigned L = –1, and all other 

particles are assigned L = 0.  It is a present-day fact, based upon numerous 

observations, that the total baryon and lepton number in any interaction is 

conserved.  For example, in the decay of the free neutron we find 

               n0 = p+ + e– + νe
0  

               B = +1 = +1 + 0  + 0  

               L =  0  =  0  + 1 + (–1) . 

The fundamental symmetries in Nature responsible for these conservation 

laws are not known at this time.  These conservation laws may, in all 

likelihood, be broken. 

 In discussing the patterns of baryon families in charge-strangeness 

space, we wish to incorporate the fact that we are dealing with baryons that 
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interact via the strong nuclear force in which isospin and strangeness are 

conserved.  We therefore choose to describe their patterns in isospin-

hypercharge space, where the hypercharge Y is defined to include both the 

strangeness and the baryon attribute of the particle in an additive way: 

              Y = B + S. 

The diagonal operator F8  is therefore assumed to be directly associated with 

the hypercharge operator, 

      F8 = (√3/2)Y.  

 Because I3 and Y commute, states can be chosen that are simultaneous 

eigenstates of the operators F3 and F8.  Since no other SU(3) operators 

commute with I3 and Y, no other additive quantum numbers are associated 

with the SU(3) symmetry.  The operators F4, … F8 are considered to be new 

constants-of-the-motion of the strong interaction hamiltonian. 

13.4 Irreducible representations of SU(3) 

 In an earlier discussion of the irreducible representations of SU(2), we 

found that the commutation relations of the generators of the group were 

satisfied not only by the fundamental 2×2 matrices but also by matrices of 

higher dimension [(2J + 1) ⊗ (2J + 1)], where J can have the values 1/2, 1, 

3/2, 2, ....The J-values correspond to the spin of the particle whose state is 

given by a spinor (a column vector with special transformation properties).  
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In the 2×2 representation, both covariant and contravariant spinors are 

allowed: 

i) covariant spinors (with lower indices) are written as 2-component 

columns that transform under U ∈ SU(2) as  

          α i´  =  Ui
j α j ,  

 
where  
 
               a1   
             α  =         , 
               a2   
 
and 
 
ii) contravariant spinors (with upper indices) are written as  
   
2-component rows that transform as: 
 
              β j´ =  β i Ui

j †, 
 
where 
 
              β   =  (b1, b2). 
 
The co- and contra-variant spinors are transformed with the aid of the anti- 
 
symmetric tensors ε ij and ε ij.  For example, 
 
                β i = ε ij β j 

 
transforms as a covariant spinor with the form 
 
                  b2   
                β i  =         . 
                 –b1   



 155 

 
The higher-dimensional representations are built up from the fundamental 
 
form by taking tensor products of the fundamental spinors α i , β j , or β i  
 
and by symmetrizing and anti-symmetrizing the result.  We state, without  
 
proof, the theorem that is used in this method: 
 
when a tensor product of spinors has been broken down into its symmetric  
 
and anti-symmetric parts, it has been decomposed into irreducible  
 
representations of the SU(n).  (See Wigner’s standard work for the original 

discussion of the method, and de Swart in Rev. Mod. Phys. 35, (1963) for a 

detailed discussion of tensor analysis in the study of the irreps of SU(n)) 

 As an example, we write the tensor product of two covariant spinors  
 
µ i and ν j in the following way 
 
   µ i⊗ν j = µ iν j = (µ iν j + µ jν i)/2  +  (µ iν j − µ jν i)/2 
 
There are four elements associated with the product (i,j can have values 1 

and 2). 

 The symmetric part of the product has three independent elements, and 

transforms as an object that has spin J=1.  (There are 2J + 1 members of the 

symmetric set).  The anti-symmetric part has one element, and therefore 

transforms as an object with spin J = 0.  This result is familiar in the theory 
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of angular momentum in Quantum Mechanics.  The explicit forms of the four 

elements are: 

 

        J3 = +1:  µ 1ν 1 

          J = 1        J3 = 0  : (1/√2)(µ 1ν 2 + µ 2ν 1) 

                 J3 = –1 : µ 2ν 1 

and 

          J = 0       J3 = 0 : (1/√2)(µ 1ν 2 – µ 2ν 1) . 

Higher-dimensional representations are built up from the tensor products of 

covariant and contravariant 3-spinors, α  and β  respectively.  The products 

are then written in terms of their symmetric and anti-symmetric parts in order 

to obtain the irreducible representations.  For example, the product α iβ
j, i,j = 

1,2,3, can be written  

           α iβ
j  =  (α iβ

j  −  (1/3)δi
jα kβ

k) + (1/3)δi
jα kβ

k , 

in which the trace has been separated out.  The trace is a zero-rank tensor 

with a single component.  The other tensor is a traceless, symmetric tensor 

with eight independent components.  The decomposition is written 

symbolically as: 

       3 ⊗ 3  =  8 ⊕ 1. 
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 We can form the tensor product of two covariant 3-spinors, µ iν j as 

follows: 

  µ iν j  =  (1/2)(µ iν j + µ jν i) + (1/2)(µ iν j – µ jν i), i,j = 1,2,3. 

Symbolically, we have 

      3 ⊗ 3  =  6 ⊕ 3 , 

in which the symmetric tensor has six components and the anti-symmetric 

tensor has three components. 

Other tensor products that will be of interest are 

         3 ⊗ 3 ⊗ 3 = 10 ⊕ 8 ⊕ 8 ⊕ 1 , 

and 

               8 ⊗ 8 = 27 ⊕ 10 ⊕ 10 ⊕ 8 ⊕ 8´ ⊕ 1 . 

 The appearance of the octet “8” in the  3 ⊗ 3 decomposition (recall the 

observed octet of spin-1/2 baryons), and the decuplet “10” in the triple 

product 3 ⊗ 3 ⊗ 3 decomposition (recall the observed decuplet of spin-3/2 

baryons), was of prime importance in the development of the group theory of 

“elementary” particles.  

13.4.1  Weight diagrams 

 Two of the Gell-Mann matrices, λ 3 and λ 8, are diagonal.  We can write 

the eigenvalue equations: 

            λ 3u = αuu, λ 3v = αvv, and λ 3w = αww, 
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 and 

             λ 8u = βuu, λ 8v = βvv, and λ 8w = βww , 

 where αi and βi are the eigenvalues.   

 Let a and b be normalization factors associated with the operators λ 3  
 
and λ 8, repectively, so that 
 
    a    0   0          b    0   0   
          λ 3

N =   0  –a   0  , and λ 8
N =   0    b   0    . 

    0    0   0                      0    0 –2b   
 
If 
 
   u = [1, 0, 0], v = [0, 1, 0], and w = [0, 0, 1] (columns), we find 
 
         λ 3

Nu =  au ,    λ 8
Nu = bu,  

 
         λ 3

Nv = –av ,    λ 8
Nv = bv ,  

 
and  
 
         λ 3

Nw = 0w ,   λ 8 
Nw = –2bw. 

 
The weight vectors are formed from the pairs of eigenvalues: 
 
  [αu, βu] = [a, b], 
 
  [αv, βv] = [−a, b],  
and 
 
  [αw, βw] = [0, −2b]. 
 
 A weight diagram is obtained by plotting these vectors in the α–β  
 
space, thus: 
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          β     
         2b     
 
          b               
 
 
        –2a       –a                 a        2a         α  
       −b          
 
      –2b        
 
 
 
 
This weight diagram for the fundamental “3” representation of SU(3) was 

well-known to Mathematicians at the time of the first use of SU(3) symmetry 

in Particle Physics.  It was to play a key role in the development of the quark 

model. 

13.5  The 3-quark model of matter 

 Although the octet and decuplet patterns of hadrons of a given spin and 

parity emerge as irreducible representations of the group SU(3),  major 

problems remained that resulted in a great deal of scepticism concerning the 

validity of the SU(3) model of fundamental particles.  The most pressing 

problem was: why are there no known particles associated with the 

fundamental triplets 3, 3 of SU(3) that exhibit the symmetry of the weight 

diagram discussed in the last section?  In 1964, Gell-Mann, and 

independently, Zweig, proposed that three fundamental entities do exist that 
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correspond to the base states of SU(3), and that they form bound states of the 

hadrons.  That such entities have not been observed in the free state is related 

to their enormous binding energy.  The three entities were called quarks by 

Gell-Mann, and aces by Zweig.  The Gell-Mann term has survived.  The 

anti-quarks are associated with the conjugate 3 representation.  The three 

quarks, denoted by u, d, and s (u and d for the up- and down-isospin states, 

and s for strangeness) have highly unusual properties; they are 

 Label  B Y I I3 Q= I3 +Y/2  S = Y − B  

    u         1/3    1/3     1/2   +1/2        +2/3            0          

    d         1/3    1/3     1/2    –1/2       –1/3             0             

    s         1/3   –2/3      0        0         –1/3           –1      

    s       –1/3     2/3      0        0         +1/3           +1        

    d       –1/3    –1/3    1/2    +1/2       +1/3            0         

    u       –1/3    –1/3    1/2    –1/2        –2/3            0          

The quarks occupy the following positions in I3 – Y space 

          Y            Y 
                                                                                 s 
                 d                         u 
 
 
                                                      I3                                                      I3 
 
 
                                                                       u                          d 
                          s 
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These diagrams have the same relative forms as the 3 and 3 weight diagrams 

of SU(3). 

 The baryons are made up of quark triplets, and the mesons are made up 

of the simplest possible structures, namely quark–anti-quark pairs.  The 

covariant and contravariant 3-spinors introduced in the previous section are 

now given physical significance: 

               µ  = [u, d, s], a covariant column 3-spinor, 

and 

               ν  = (u, d, s), a contravariant row 3-spinor. 

where u = [1, 0, 0], d = [0, 1, 0], and s = [0, 0, 1] represent the unitary 

symmetry part of the total wavefunctions of the three quarks. 

 The formal operators A±, B±, and C±, introduced in section 13.3.1, are 

now viewed as operators that transform one flavor (type) of quark into 

another flavor (they are shift operators): 

           A± ≡ I±(I3)    → I3 ± 1 , 

           B± ≡ U±(U3) → U3 ± 1, called the U-spin operator, 

and 

           C± ≡ V±(V3) → V3 ± 1, called the V-spin operator. 

Explicitly, we have 
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           I+(–1/2) →  1/2 : d → u 

           I–(+1/2) → –1/2 : u → d 

          U+(–1/2) →   1/2 : s → d 

          U–(+1/2) → –1/2 : d → s 

          V+(–1/2) →   1/2 : u → s 

and 

          V–(+1/2) →  –1/2 : s → u. 

The quarks can be characterized by the three quantum numbers I3, U3, V3. 

Their positions in the I3-U3-V3 - space again show the underlying symmetry: 

                                    U3                                 −V3 
 
 
                                                   +1/2 
 
            d(−1/2, 1/2, 0)                                             u(1/2, 0, −1/2) 
 
 
                     −I3        −1/2                                  +1/2                  I3 
 
 
                                        +1/2 
 
                                                           s(0, −1/2, 1/2) 
                                        V3            −Y               –U3     
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The members of the octet of mesons with JP = 0– are formed from qq-pairs 

that belong to the fundamental 3, 3 representation of the quarks.  The π0 and 

η0 mesons are linear combinations of the qq states, thus 

 
     K0  ds              Y                   K+  us    
 
                  s  
 
     d                                  u  
 
  π–  du                       π0                           π+    ud   
 
         −1       η0                   +1      I3 
 
     u                                 d  
           s       
 
 
      K–  su                                  K0   sd    
 
 
The nonet formed from the tensor product  3 ⊗ 3  is split into an octet that is 

even under the label exchange of two particles, and a singlet that is odd 

under label exchange: 

        3 ⊗ 3  =  8 ⊕ 1 

where the “1” is 

              η0´ = (1/√3)(uu + dd + ss), 

 and the two members of the octet at the center are: 

    π0 = (1/√2)(uu – dd) and η0 = (1/√6)(uu + dd − 2ss). 
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The action of I– on π+ is to transform it into a π0.  This operation has the  
 
following meaning in terms of I– acting on the tensor product, u ⊗ d: 
 
 
            I–(u ⊗ d) ≡ (I–u) ⊗ d + u ⊗ (I–d)  (c.f. derivative rule) 
                                     ↓           ↓                     ↓  
     I– ( π+ )  =   d   ⊗  d + u  ⊗ u   
 
                 →  π0     
Omitting the tensor product sign, normalizing the amplitudes, and choosing 

the phases in the generally accepted way, we have: 

    π0 = (1/√2)(uu – dd). 

The singlet η0´ is said to be orthogonal to π0 and η0 at the origin. 

 If the symmetry of the octet were exact, the eight members of the octet 

would have the same mass.  This is not quite the case; the symmetry is 

broken by the difference in effective mass between the u- and d-quark 

(essentially the same effective masses: ~ 300 MeV/c2) and the s-quark 

(effective mass ~ 500 MeV/c2).  (It should be noted that the effective masses 

of the quarks, derived from the mass differences of hadron-pairs, is not the 

same as the “current-quark” masses that appear in the fundamental theory.  

The discrepancy between the effective masses and the fundamental masses is 

not fully understood at this time). 

 The decomposition of 3 ⊗ 3 ⊗ 3 is 

           3 ⊗ 3 ⊗ 3 = (6 ⊕ 3) ⊗ 3 
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                          =  10 ⊕ 8 ⊕ 8´ ⊕ 1 

in which the states of the 10 are symmetric, the 1 is antisymmetric, and the 8, 

8´ states are of mixed symmetry.  The decuplet that appears in this 

decomposition is associated with the observed decuplet of spin-3/2 baryons. 

In terms of the three fundamental quarks — u, d, and s, the make -up of the 

individual members of the decuplet is shown schematically in the following 

diagram: 

 
       ddd         ~ dud           ~ uud          uuu 
 
 
          ~ dds          ~ dus          ~ uus 
 
 
            ~ sds          ~ sus 
 
 
                        sss 
 
The precise make-up of each state, labeled by (Y, I, I3,) is given in the 

following table: 

  (1, 3/2, +3/2)  =            uuu(++) 
  (1, 3/2, +1/2)  =   (1/√3)(udu + duu + uud) 
  (1, 3/2, –1/2)  =   (1/√3)(ddu + udd + dud) 
  (1, 3/2, –3/2)  =            ddd(–) 
 
  (0, 1, +1)       =   (1/√3)(usu + suu + uus) 
  (0, 1,   0)       =   (1/√6)(uds + dsu + sud + dus + sdu + usd) 
  (0, 1, –1)       =   (1/√3)(dsd + sdd + dds) 
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        (–1, 1/2, +1/2)  =   (1/√3)(ssu + uss + sus) 
        (–1, 1/2, –1/2)  =   (1/√3)(ssd + dss + sds) 
 
  (−2, 0, 0)       =             sss(–) 
 
The general theory of the permutation group of n entities, and its 

representations, is outside the scope of this introduction.  The use of the 

Young tableaux in obtaining the mixed symmetry states is treated in 

Hamermesh (1962).   

 The charges of the Δ++, Δ–, and Ω–  particles fix the fractional values of 

the quarks, namely 

      quark flavor      charge (in units of the electron charge)  

               u              +2/3   

               d              –1/3   

               s              –1/3   

The charges of the anti-quarks are opposite in sign to these values. 

 Extensive reviews of the 3-quark model and its application to the 

physics of the low-energy part of the hadron spectrum can be found in 

Gasiorowicz (1966) and Gibson and Pollard (1976).  

13.6  The need for a new quantum number: hidden color 

  Immediately after the introduction of the 3-quark model by Gell-Mann 

and Zweig, it was recognized that the model was not consistent with the 
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extended Pauli principle when applied to bound states of three quarks.  For 

example, the structure of the spin-3/2 Δ+ state is such that, if each quark is 

assigned a spin sq = 1/2, the three spins must be aligned ↑↑↑ to give a net 

spin of 3/2.  (It is assumed that the relative orbital angular momentum of the 

quarks in the Δ+ is zero (a symmetric s-state) — a reasonable assumption to 

make, as it corresponds to minimum kinetic energy, and therefore to a state 

of lowest total energy).  The quarks are fermions, and therefore they must 

obey the generalized Pauli Principle; they cannot exist in a completely 

aligned spin state when they are in an s-state that is symmetric under particle 

(quark) exchange.  The unitary spin component of the total wavefunction 

must be anti-symmetric.  Greenberg (1964) proposed that a new degree of 

freedom must be assigned to the quarks if the Pauli Principle is not to be 

violated.  The new property was later called “color”, a property with 

profound consequences.  A quark with a certain flavor possesses color (red, 

blue, green, say) that corresponds to the triplet representation of another 

form of SU(3) — namely SU(3)C, where the subscript C differentiates the 

group from that introduced by Gell-Mann and Zweig — the flavor group 

SU(3)F.  The anti-quarks (that possess anti-color) have a triplet 

representation in SU(3)C that is the conjugate representation (the 3).  

Although the SU(3)F symmetry is known not to be exact, we have evidence 
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 that the SU(3)C symmetry is an exact symmetry of Nature.  Baryons and 

mesons are found to be colorless; the color singlet of a baryon occurs in the 

decomposition 

   SU(3)C = 3 ⊗ 3 ⊗ 3 = 10 + 8 + 8´ + 1 . 

The meson singlets consist of linear combinations of the form 

   1 = (RR + BB + GG)/√3 . 

 Although the hadrons are colorless, certain observable quantities are 

directly related to the number of colors in the model.  For example, the 

purely electromagnetic decay of the neutral pion, π0, into two photons 

             π0 = γ + γ, 

has a lifetime that is found to be closely proportionl to the square of the 

number of colors. (Adler (1970) gives Γ = /τ = 1(eV) (number of colors)2  

The measurements of the lifetime give a value of  Γ ~8 eV, consistent with  

Ncols = 3.  Since these early measurements, refined experiments have 

demonstrated that there are three, and only three, colors associated with the 

quarks.  

 In studies of electron-positron interactions in the GeV-region, the ratio 

of cross sections: 

              R = σ(e+e– → hadrons)/σ(e+e– → µ+µ–) 
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is found to depend linearly on the number of colors.  Good agreement 

between the theoretical model and the measured value of R, over a wide 

range of energy, is obtained for three colors.   

 The color attribute of the quarks has been responsible for the 

development of a theory of the strongly interacting particles, called  

quantum chromodynamics.  It is a field theory in which the quarks are 

generators of a new type of field — the color field.  The mediators of the 

field are called gluons; they possess color, the attribute of the source of the 

field.  Consequently, they can interact with each other through the color 

field.  This is a field quite unlike the electrodynamic field of classical 

electromagnetism, in which the field quanta do not carry the attribute of the 

source of the field, namely electric charge.  The photons, therefore, do not 

interact with each other.   

 The gluons transform a quark of a particular color into a quark of a 

different color.  For example, in the interaction between a red quark and a 

blue quark, the colors are exchanged.  This requires that the exchanged gluon 

carry color and anti-color, as shown: 
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  qb                                     qr    
 
 
                                               gluon, grb carries red and anti-blue: 
            the color lines are continuous.  
                 qr                            qb    
 
 Three different colors permit nine different ways of coupling quarks 

and gluons.  Three of these are red-red, blue-blue, and green-green that do 

not change the colors.  A linear combination ~(R→R + B→B + G→G) is 

symmetric in the color labels, and this combination is the singlet state of the 

group SU(3)C.  Eight gluons, each with two color indices, are therefore 

required in the 3-color theory of quarks.   

13.7  More massive quarks 

 In 1974, the results of two independent experiments one, a study of the 

reaction p + Be → e+ + e– .. (Ting et al.), the other a study of e+ + e– → 

hadrons .. (Richter et al), showed the presence of a sharp resonance at a 

center-of-mass energy of 3.1 GeV.  The lifetime of the resonant state was 

found to be ~10–20 seconds — more than 103 seconds longer than expected 

for a state formed in the strong interaction.  The resonant state is called the 

J/ψ.  It was quickly realized that the state corresponds to the ground state of 

a new quark–anti-quark system, a bound state cc, where c is a fourth, 
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massive, quark endowed with one unit of a new quantum number c, called 

“charm”.  The quantum numbers assigned to the c-quark are 

                 JP = 1/2+, c = 1, Q/e = +2/3, and B = 1/3. 

  Sound theoretical arguments for a fourth quark, carrying a new 

quantum number, had been put forward several years before the experimental 

observation of the J/ψ state.  Since 1974, a complex set of states of the 

“charmonium” system has been observed, and their decay properties studied.  

Detailed comparisons have been made with sophisticated theoretical models 

of the system. 

 The inclusion of a charmed quark in the set of quarks means that the 

group SU(4)F must be used in place of the original Gell-Mann-Zweig group 

SU(3)F.  Although the SU(4)F symmetry is badly broken because the 

effective mass of the charmed quark is ~ 1.8 GeV/c2, some useful 

applications have been made using the model.  The fundamental 

representations are 

          [u, d, s, c], a covariant column spinor, 

 and 

          (u, d, s, c), a contravariant row spinor. 
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The irreps are constructed in a way that is analogous to that used in SU(3)F, 

namely, by finding the symmetric and anti-symmetric decompositions of the 

various tensor products.  The most useful are: 

         4 ⊗ 4 = 15 ⊕ 1, 

         4 ⊗ 4 = 10 ⊕ 6, 

           4 ⊗ 4 ⊗ 4 = 20sym ⊕ 20mix ⊕ 20´mix ⊕ 4anti, 

 and 

    15 ⊗ 15 = 1 ⊕ 15sym ⊕ 15anti ⊕ 20sym ⊕ 45 ⊕ 45 ⊕ 84. 

The “15” includes the non-charmed (JP = 0– ) mesons and the following 

charmed mesons: 

        D0 = cu, D0 = cu, mass = 1863MeV/c2 , 

        D+ = cd, D– = cd, mass = 1868 MeV/c2,  

         F+ = cs, F– = cs,  mass = 2.04 MeV/c2. 

In order to discuss the baryons, it is necessary to include the quark spin, and 

therefore the group must be extended to SU(8)F.  Relatively few baryons 

have been studied in detail in this extended framework.   

 In 1977, well-defined resonant states were observed at energies of 9.4, 

10.01, and 10.4 GeV, and were interpreted as bound states of another quark, 

the “bottom” quark, b, and its anti-partner, the b.  Mesons can be formed that 

include the b-quark, thus 
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        Bu = bu, Bd
0 = bd, Bs

0 = bs, and Bc = bc . 

The study of the weak decay modes of these states is currently fashionable. 

 In 1994, definitive evidence was obtained for the existence of a sixth 

quark, called the “top” quark, t.  It is a massive entity with a mass almost 200 

times the mass of the proton! 

 We have seen that the quarks interact strongly via gluon exchange.  

They also take part in the weak interaction.  In an earlier discussion of 

isospin, the group generators were introduced by considering the β-decay of 

the free neutron: 

                      n0 → p+ + e– + ν0  . 

We now know that, at the microscopic level, this process involves the 

transformation of a d-quark into a u-quark, and the production of the carrier 

of the weak force, the massive W– particle.  The W– boson (spin 1) decays 

instantly into an electron–anti-neutrino pair, as shown: 

 
 
           ν0       
 
      W – 1                   e–     
 
         d                                                                         u 
           neutron, n0               d(–1/3) → u(+2/3)                 proton, p+ 
         u                                                                         u 
 
         d                                                                         d 
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The carriers of the Weak Force, W±, Z0, were first identified in p-p collisions 

at high center-of-mass energy.  The processes involve quark–anti-quark 

interactions, and the detection of the decay electrons and positrons. 

 
 
         e+        e–    
             Z0            
      u(+2/3)                   u (–2/3)  
      ν0 
            W+             e+  
      u(+2/3)           d(+1/3) 
            ν0          
 
            W–             e–      
      d(−1/3)           u(−2/3) 
 
 
 The charge is conserved at each vertex. 

 The carriers have very large measured masses: 

  mass W±  ~ 81 GeV/c2, and mass Z0 ~ 93 GeV/c2.  

 (Recall that the range of a force ∝ 1/(mass of carrier); the W and Z masses 

correspond to a very short range, ~10-18 m, for the Weak Force). 

 Any quantitative discussion of current work using Group Theory to 

tackle Grand Unified Theories, requires a knowledge of Quantum Field 

Theory that is not expected of readers of this introductory book. 
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14 

LIE GROUPS AND THE CONSERVATION LAWS OF THE 

PHYSICAL UNIVERSE 

14.1  Poisson and Dirac Brackets 

 The Poisson Bracket of two differentiable functions 

  A(p1, p2, ...pn, q1, q2, ...qn) 

and 

  B(p1, p2, ...pn, q1, q2, ...qn) 

of two sets of variables (p1, p2, ...pn) and (q1, q2, ...qn) is defined as 

       {A, B} ≡ ∑1
n (∂A/∂qi)(∂B/∂pi) – (∂A/∂pi)(∂B/∂qi) . 

 If A ≡ Ω (pi, qi), a dynamical variable, and 

    B ≡ H(pi, qi), the hamiltonian of a dynamical system,  

where pi is the (canonical) momentum and qi is a (generalized) coordinate, 

then 

              {Ω , H} = ∑1
n (∂Ω /∂qi)(∂H/∂pi) – (∂Ω /∂pi)(∂H/∂qi) . 

(n is the”number of degrees of freedom” of the system). 

Hamilton’s equations are 

        ∂H/∂pi = dqi/dt and ∂H/∂qi = – dpi/dt , 

and therefore 
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              {Ω , H} = ∑1
n (∂Ω /∂qi)(dqi/dt) + (∂Ω /∂qi)(dpi/dt) . 

The total differential of Ω (pi, qi) is 

            dΩ  = ∑1
n (∂Ω /∂qi)dqi + (∂Ω /∂pi)dpi. 

and its time derivative is 
           
              (dΩ /dt) = ∑1

n (∂Ω /∂qi)(dqi/dt) + (∂Ω /∂pi)(dpi/dt)  
                     •    
                 = {Ω , H} = Ω  . 
 
 If the Poisson Bracket is zero, the physical quantity Ω  is a constant of 

the motion.  

In Quantum Mechanics, the relation 

      (dΩ /dt) = {Ω , H} 

is replaced by 

      (dΩ /dt) = −(i/))[Ω , H], 

Heisenberg’s equation of motion.  It is the custom to refer to the commutator 

[Ω , H] as the Dirac Bracket. 

 If the Dirac Bracket is zero, the quantum mechanical quantity Ω  is a 

constant of the motion..    

 (Dirac proved that the classical Poisson Bracket {Ω , H} can be 

identified with the Heisenberg commutator –(i/)[Ω , H] by making a suitable 

choice of the order of the q’s and p’s in the Poisson Bracket). 
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14.2  Infinitesimal unitary transformations in Quantum Mechanics 

The Lie form of an infinitesimal unitary transformation is 

       U = I + iδαX/ , 

where δα ia real infinitesimal parameter, and X is an hermitian operator.  (It 

is straightforward to show that this form of U is, indeed, unitary). 

 Let a dynamical operator Ω  change under an infinitesimal unitary 

transformation: 

      Ω  → Ω ´ = UΩU–1   

           = (I + iδaX/)Ω (I – iδaX/) 

           = Ω  – iδaΩX/ + iδaXΩ / to 1st-order 

           = Ω  + i(δaXΩ  – ΩδaX)/ 

           = Ω  + i(FΩ  – ΩF)/. 

where 

        F = δaX. 

The infinitesimal change in Ω  is therefore 

      δΩ  = Ω ´ – Ω  

           = i[F, Ω ]/ 

If we identify F with –Hδt (the classical form for a purely temporal change   

in the system) then  
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    δΩ  = i[−Hδt, Ω ]/, 

or 

           –δΩ  = i[H, Ω ]δt/ , 

so that 

       –δΩ /δt = i[H, Ω ]/.  

For a temporal change in the system, δΩ /δt = – dΩ /dt.  

The fundamental Heisenberg equation of motion  

         dΩ /dt = i[Η ,Ω ]/  

is therefore deduced from the unitary infinitesimal transformation of the 

operator Ω . 

This approach was taken by Schwinger in his formulation of Quantum 

Mechanics. 

 |F| = Hδt is directly related to the generator, X, of a Quantum 

Mechanical infinitesimal transformation, and therefore we can associate with 

every symmetry transformation of the system an hermitian operator F that is 

a constant of the motion - its eigenvalues do not change with time.  This is an 

example of Noether’s Theorem: 

 A conservation law is associated with every symmetry of the equations 

of motion.  If the equations of motion are unchanged by the transformations 
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of a Group then a property of the system will remain constant as the system 

evolves with time.  As a well-known example, if the equations of motion of 

an object are invariant under translations in space, the linear momentum of 

the system is conserved. 
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