
Exercises 1

Solutions Manual Elementary Linear Algebra

B.1 Exercises 1.8

1. Let z = 5 + i9. Find z−1.

(5 + i9)
−1

= 5

106
− 9

106
i

2. Let z = 2 + i7 and let w = 3− i8. Find zw, z + w, z2, and w/z.

62 + 5i, 5− i,−45 + 28i, and − 50

53
− 37

53
i.

3. Give the complete solution to x4 + 16 = 0.

x4 + 16 = 0, Solution is: (1− i)
√
2,− (1 + i)

√
2,− (1− i)

√
2, (1 + i)

√
2.

4. Graph the complex cube roots of 8 in the complex plane. Do the same for the four fourth
roots of 16.

The cube roots are the solutions to z3 + 8 = 0, Solution is: i
√
3 + 1, 1− i

√
3,−2

The fourth roots are the solutions to z4 + 16 = 0, Solution is:

(1− i)
√
2,− (1 + i)

√
2,− (1− i)

√
2, (1 + i)

√
2. When you graph these, you will have three equally spaced points on the circle of radius

2 for the cube roots and you will have four equally spaced points on the circle of radius 2 for
the fourth roots. Here are pictures which should result.

5. If z is a complex number, show there exists ω a complex number with |ω| = 1 and ωz = |z| .

If z = 0, let ω = 1. If z 6= 0, let ω =
z

|z|

6. De Moivre’s theorem says [r (cos t+ i sin t)]
n

= rn (cosnt+ i sinnt) for n a positive integer.
Does this formula continue to hold for all integers, n, even negative integers? Explain.

Yes, it holds for all integers. First of all, it clearly holds if n = 0. Suppose now that n is a
negative integer. Then −n > 0 and so

[r (cos t+ i sin t)]n =
1

[r (cos t+ i sin t)]
−n

=
1

r−n (cos (−nt) + i sin (−nt))

=
rn

(cos (nt)− i sin (nt))
=

rn (cos (nt) + i sin (nt))

(cos (nt)− i sin (nt)) (cos (nt) + i sin (nt))

= rn (cos (nt) + i sin (nt))

because (cos (nt)− i sin (nt)) (cos (nt) + i sin (nt)) = 1.
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2 Exercises

7. You already know formulas for cos (x+ y) and sin (x+ y) and these were used to prove De
Moivre’s theorem. Now using De Moivre’s theorem, derive a formula for sin (5x) and one for
cos (5x). Hint: Use Problem ?? on Page ?? and if you like, you might use Pascal’s triangle
to construct the binomial coefficients.

sin (5x) = 5 cos4 x sinx− 10 cos2 x sin3 x+ sin5 x

cos (5x) = cos5 x− 10 cos3 x sin2 x+ 5 cosx sin4 x

8. If z and w are two complex numbers and the polar form of z involves the angle θ while the
polar form of w involves the angle φ, show that in the polar form for zw the angle involved is
θ + φ. Also, show that in the polar form of a complex number, z, r = |z| .
You have z = |z| (cos θ + i sin θ) and w = |w| (cosφ+ i sinφ) . Then when you multiply these,
you get

|z| |w| (cos θ + i sin θ) (cosφ+ i sinφ)

= |z| |w| (cos θ cosφ− sin θ sinφ+ i (cos θ sinφ+ cosφ sin θ))

= |z| |w| (cos (θ + φ) + i sin (θ + φ))

9. Factor x3 + 8 as a product of linear factors.

x3 + 8 = 0, Solution is: i
√
3 + 1, 1− i

√
3,−2 and so this polynomial equals

(x+ 2)
(

x−
(

i
√
3 + 1

))(

x−
(

1− i
√
3
))

10. Write x3+27 in the form (x+ 3)
(

x2 + ax+ b
)

where x2+ax+ b cannot be factored any more
using only real numbers.

x3 + 27 = (x+ 3)
(

x2 − 3x+ 9
)

11. Completely factor x4 + 16 as a product of linear factors.

x4 + 16 = 0, Solution is: (1− i)
√
2,− (1 + i)

√
2,− (1− i)

√
2, (1 + i)

√
2. These are just the

fourth roots of −16. Then to factor, this you get
(

x−
(

(1− i)
√
2
))(

x−
(

− (1 + i)
√
2
))

·
(

x−
(

− (1− i)
√
2
))(

x−
(

(1 + i)
√
2
))

12. Factor x4 + 16 as the product of two quadratic polynomials each of which cannot be factored
further without using complex numbers.

x4 + 16 =
(

x2 − 2
√
2x+ 4

) (

x2 + 2
√
2x+ 4

)

. You can use the information in the preceding
problem. Note that (x− z) (x− z) has real coefficients.

13. If z, w are complex numbers prove zw = zw and then show by induction that z1 · · · zm =
z1 · · · zm. Also verify that

∑

m

k=1
zk =

∑

m

k=1
zk. In words this says the conjugate of a prod-

uct equals the product of the conjugates and the conjugate of a sum equals the sum of the
conjugates.

(a+ ib) (c+ id) = ac− bd+ i (ad+ bc) = (ac− bd)− i (ad+ bc)

(a− ib) (c− id) = ac − bd − i (ad+ bc) which is the same thing. Thus it holds for a product
of two complex numbers. Now suppose you have that it is true for the product of n complex
numbers. Then

z1 · · · zn+1 = z1 · · · zn zn+1

and now, by induction this equals
z1 · · · zn zn+1
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Exercises 3

As to sums, this is even easier.

n
∑

j=1

(xj + iyj) =

n
∑

j=1

xj + i

n
∑

j=1

yj

=

n
∑

j=1

xj − i

n
∑

j=1

yj =

n
∑

j=1

xj − iyj =

n
∑

j=1

(xj + iyj).

14. Suppose p (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 where all the ak are real numbers. Suppose
also that p (z) = 0 for some z ∈ C. Show it follows that p (z) = 0 also.

You just use the above problem. If p (z) = 0, then you have

p (z) = 0 = anzn + an−1zn−1 + · · ·+ a1z + a0

= anzn + an−1zn−1 + · · ·+ a1z + a0

= an zn + an−1 zn−1 + · · ·+ a1 z + a0

= anz
n + an−1z

n−1 + · · ·+ a1z + a0

= p (z)

15. Show that 1 + i, 2 + i are the only two zeros to

p (x) = x2 − (3 + 2i)x+ (1 + 3i)

so the zeros do not necessarily come in conjugate pairs if the coefficients are not real.

(x− (1 + i)) (x− (2 + i)) = x2 − (3 + 2i)x+ 1 + 3i

16. I claim that 1 = −1. Here is why.

−1 = i2 =
√
−1
√
−1 =

√

(−1)2 =
√
1 = 1.

This is clearly a remarkable result but is there something wrong with it? If so, what is wrong?

Something is wrong. There is no single
√
−1.

17. De Moivre’s theorem is really a grand thing. I plan to use it now for rational exponents, not
just integers.

1 = 1(1/4) = (cos 2π + i sin 2π)
1/4

= cos (π/2) + i sin (π/2) = i.

Therefore, squaring both sides it follows 1 = −1 as in the previous problem. What does this
tell you about De Moivre’s theorem? Is there a profound difference between raising numbers
to integer powers and raising numbers to non integer powers?

It doesn’t work. This is because there are four fourth roots of 1.

18. Review Problem 6 at this point. Now here is another question: If n is an integer, is it always
true that (cos θ − i sin θ)

n

= cos (nθ)− i sin (nθ)? Explain.

Yes, this is true.

(cos θ − i sin θ)
n

= (cos (−θ) + i sin (−θ))n

= cos (−nθ) + i sin (−nθ)
= cos (nθ)− i sin (nθ)
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4 Exercises

19. Suppose you have any polynomial in cos θ and sin θ. By this I mean an expression of the
form

∑

m

α=0

∑

n

β=0
aαβ cos

α θ sinβ θ where aαβ ∈ C. Can this always be written in the form
∑

m+n

γ=−(n+m)
bγ cos γθ +

∑

n+m

τ=−(n+m)
cτ sin τθ? Explain.

Yes it can. It follows from the identities for the sine and cosine of the sum and difference of
angles that

sin a sin b =
1

2
(cos (a− b)− cos (a+ b))

cos a cos b =
1

2
(cos (a+ b) + cos (a− b))

sin a cos b =
1

2
(sin (a+ b) + sin (a− b))

Now cos θ = 1 cos θ + 0 sin θ and sin θ = 0 cos θ + 1 sin θ. Suppose that whenever k ≤ n,

cosk (θ) =

k
∑

j=−k

aj cos (jθ) + bj sin (jθ)

for some numbers aj , bj. Then

cosn+1 (θ) =

n
∑

j=−n

aj cos (θ) cos (jθ) + bj cos (θ) sin (jθ)

Now use the above identities to write all products as sums of sines and cosines of (j − 1) θ, jθ, (j + 1) θ.
Then adjusting the constants, it follows

cosn+1 (θ) =

n+1
∑

j=−n+1

a′
j
cos (θ) cos (jθ) + b′

j
cos (θ) sin (jθ)

You can do something similar with sinn (θ) and with products of the form

cosα θ sinβ θ.

20. Suppose p (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 is a polynomial and it has n zeros,

z1, z2, · · · , zn

listed according to multiplicity. (z is a root of multiplicity m if the polynomial f (x) = (x− z)
m

divides p (x) but (x− z) f (x) does not.) Show that

p (x) = an (x− z1) (x− z2) · · · (x− zn) .

p (x) = (x− z1) q (x)+r (x) where r (x) is a nonzero constant or equal to 0. However, r (z1) = 0
and so r (x) = 0. Now do to q (x) what was done to p (x) and continue until the degree of the
resulting q (x) equals 0. Then you have the above factorization.

21. Give the solutions to the following quadratic equations having real coefficients.

(a) x2 − 2x+ 2 = 0, Solution is: 1 + i, 1− i

(b) 3x2 + x+ 3 = 0, Solution is: 1

6
i
√
35− 1

6
,− 1

6
i
√
35− 1

6

(c) x2 − 6x+ 13 = 0, Solution is: 3 + 2i, 3− 2i

(d) x2 + 4x+ 9 = 0, Solution is: i
√
5− 2,−i

√
5− 2
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Exercises 5

(e) 4x2 + 4x+ 5 = 0, Solution is: − 1

2
+ i,− 1

2
− i

22. Give the solutions to the following quadratic equations having complex coefficients. Note how
the solutions do not come in conjugate pairs as they do when the equation has real coefficients.

(a) x2 + 2x+ 1 + i = 0, Solution is : x = −1 + 1

2

√
2− 1

2
i
√
2, x = −1− 1

2

√
2 + 1

2
i
√
2

(b) 4x2 + 4ix− 5 = 0, Solution is : x = 1− 1

2
i, x = −1− 1

2
i

(c) 4x2 + (4 + 4i)x+ 1 + 2i = 0, Solution is : x = − 1

2
, x = − 1

2
− i

(d) x2 − 4ix− 5 = 0, Solution is : x = −1 + 2i, x = 1 + 2i

(e) 3x2+(1− i)x+3i = 0, Solution is : x = − 1

6
+ 1

6

√
19+

(

1

6
− 1

6

√
19

)

i, x = − 1

6
− 1

6

√
19+

(

1

6
+ 1

6

√
19

)

i

23. Prove the fundamental theorem of algebra for quadratic polynomials having coefficients in C.

This is pretty easy because you can simply write the quadratic formula. Finding the square
roots of complex numbers is easy from the above presentation. Hence, every quadratic poly-
nomial has two roots in C. Note that the two square roots in the quadratic formula are on
opposite sides of the unit circle so one is −1 times the other.

B.2 Exercises 2.6

1. Verify all the properties 2.3-2.10.

You just do these. Here is another example. Letting (v)
j
denote vj where v = (v1, · · · , vn) ,

(α (v +w))
j
= α (vj + wj) = αvj + αwj = (αv)

j
+ (αw)

j
= (αv + αw)

j

since j is arbitrary, it follows that α (v +w) = αv + αw

2. Compute 5 (1, 2 + 3i, 3,−2) + 6 (2− i, 1,−2, 7) .
5
(

1 2 + 3i 3 −2
)

+ 6
(

2− i 1 −2 7
)

=
(

17− 6i 16 + 15i 3 32
)

3. Draw a picture of the points in R2 which are determined by the following ordered pairs.

(a) (1, 2)

(b) (−2,−2)
(c) (−2, 3)
(d) (2,−5)

This is left for you. However, consider (−2, 3)

4. Does it make sense to write (1, 2) + (2, 3, 1)? Explain.

It makes absolutely no sense at all.
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6 Exercises

5. Draw a picture of the points in R3 which are determined by the following ordered triples.

(a) (1, 2, 0)

(b) (−2,−2, 1)
(c) (−2, 3,−2)

This is harder to do and have it look good. However, here is a picture of the last one.

−2

(−2, 3,−2)
x

z

y

B.3 Exercises 2.8

1. The wind blows from West to East at a speed of 50 miles per hour and an airplane which
travels at 300 miles per hour in still air is heading North West. What is the velocity of the
airplane relative to the ground? What is the component of this velocity in the direction North?

The velocity is the sum of two vectors. 50i+ 300
√

2
(i+ j) =

(

50 + 300
√

2

)

i+300
√

2
j. The component

in the direction of North is then 300
√

2
= 150

√
2 and the velocity relative to the ground is

(

50 +
300√
2

)

i+
300√
2
j

2. In the situation of Problem 1 how many degrees to the West of North should the airplane head
in order to fly exactly North. What will be the speed of the airplane relative to the ground?

The speed of the plane is 300. Let the direction vector be (a, b) where this is a unit vector.
Then you need to have

300a+ 50 = 0

Thus a = −1/6. Then b = 1

6

√
35. Then you would have the velocity of the airplane as

300

(

−1

6
,
1

6

√
35

)

+ (50, 0) =
(

0 50
√
35

)

Hence its speed relative to the ground is

50
√
35 = 295. 8

The direction vector is
(

− 1

6
, 1

6

√
35

)

and the cosine of the angle is then equal to
√
35/6 =

0.986 01.

Then you look this up in a table or something. You find it is .167 radians. Hence it is

.167

π
=

θ

180

Which corresponds to θ = 9.56 degrees.
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Exercises 7

3. In the situation of 2 suppose the airplane uses 34 gallons of fuel every hour at that air speed
and that it needs to fly North a distance of 600 miles. Will the airplane have enough fuel to
arrive at its destination given that it has 63 gallons of fuel?

From the above, it goes 295.8 miles every hour. Thus it will take 600

295.8
= 2. 028 4 hours to get

where it is going. This will require 2. 028 4× 34 = 68. 966 gallons of gas. Therefore, it will not
make it. This will be the case even if the people in the plane are optimistic and have a good
attitude.

4. An airplane is flying due north at 150 miles per hour. A wind is pushing the airplane due east
at 40 miles per hour. After 1 hour, the plane starts flying 30◦ East of North. Assuming the
plane starts at (0, 0) , where is it after 2 hours? Let North be the direction of the positive y
axis and let East be the direction of the positive x axis.

Velocity of plane for the first hour: (0, 150) + (40, 0) =
(

40 150
)

. After one hour it is at

(40, 150) . Next the velocity of the plane is 150
(

1

2
,
√

3

2

)

+ (40, 0) in miles per hour. After two

hours it is then at

(40, 150) + 150
(

1

2
,
√

3

2

)

+ (40, 0) =
(

155 75
√
3 + 150

)

=
(

155.0 279. 9
)

5. City A is located at the origin while city B is located at (300, 500) where distances are in miles.
An airplane flies at 250 miles per hour in still air. This airplane wants to fly from city A to
city B but the wind is blowing in the direction of the positive y axis at a speed of 50 miles per
hour. Find a unit vector such that if the plane heads in this direction, it will end up at city B
having flown the shortest possible distance. How long will it take to get there?

Wind: (0, 50) . Direction it needs to travel: (3, 5) 1
√

34
. Then you need 250 (a, b)+(0, 50) to have

this direction where (a, b) is an appropriate unit vector. Thus you need

a2 + b2 = 1
250b+ 50

250a
=

5

3

Thus a = 3

5
, b = 4

5
. Then the velocity of the plane relative to the ground is

(

150 250
)

. The
speed of the plane relative to the ground is then

√

(150)
2
+ (250)

2
= 291. 55.

It has to go a distance of

√

(300)
2
+ (500)

2
= 583. 10 miles. Therefore, it takes

583. 1

291. 55
= 2 hours

6. A certain river is one half mile wide with a current flowing at 2 miles per hour from East to
West. A man swims directly toward the opposite shore from the South bank of the river at
a speed of 3 miles per hour. How far down the river does he find himself when he has swam
across? How far does he end up swimming?

water: (−2, 0) swimmer: (0, 3) . Speed relative to earth. (−2, 3) . It takes him 1/6 of an hour
to get across. Therefore, he ends up travelling 1

6

√
4 + 9 = 1

6

√
13 miles. He ends up 1/3 mile

down stream.

7. A certain river is one half mile wide with a current flowing at 2 miles per hour from East to
West. A man can swim at 3 miles per hour in still water. In what direction should he swim
in order to travel directly across the river? What would the answer to this problem be if the
river flowed at 3 miles per hour and the man could swim only at the rate of 2 miles per hour?
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8 Exercises

Man: 3 (a, b) Water: (−2, 0) . Then you need 3a = 2 and so a = 2/3 and hence b =
√
5/3. The

vector is then
(

2

3
,
√

5

3

)

. In the second case, he could not do it. You would need to have a unit

vector (a, b) such that 2a = 3. This is not possible, not even if you try real hard.

8. Three forces are applied to a point which does not move. Two of the forces are 2i + j + 3k
Newtons and i− 3j+ 2k Newtons. Find the third force.

(2, 1, 3) + (1,−3, 2) + (x, y, z) = (0, 0, 0) . Thus the third force is (−3, 2,−5) .

9. The total force acting on an object is to be 2i+ j+k Newtons. A force of −i+ j+ k Newtons
is being applied. What other force should be applied to achieve the desired total force?

(2, 1, 1) = (−1, 1, 1) + (x, y, z) . The third force is to be (3, 0, 0).

10. A bird flies from its nest 5 km. in the direction 60◦ north of east where it stops to rest on a
tree. It then flies 10 km. in the direction due southeast and lands atop a telephone pole. Place
an xy coordinate system so that the origin is the bird’s nest, and the positive x axis points
east and the positive y axis points north. Find the displacement vector from the nest to the
telephone pole.

First stopping place:
(

5
√

3

2
, 5 1

2

)

Next stopping place.
(

5
√

3

2
, 5 1

2

)

+ 10
(

1
√

2
,− 1

√

2

)

=
(

5
√
2 + 5

2

√
3 11

2
− 5
√
2

)

11. A car is stuck in the mud. There is a cable stretched tightly from this car to a tree which is
20 feet long. A person grasps the cable in the middle and pulls with a force of 100 pounds
perpendicular to the stretched cable. The center of the cable moves two feet and remains still.
What is the tension in the cable? The tension in the cable is the force exerted on this point
by the part of the cable nearer the car as well as the force exerted on this point by the part of
the cable nearer the tree.

2T
(

2
√

104

)

= 100, Solution is: T = 50
√
26.

B.4 Exercises 3.3

1. Use formula 3.11 to verify the Cauchy Schwartz inequality and to show that equality occurs if
and only if one of the vectors is a scalar multiple of the other.

This formula says that u · v = |u| |v| cos θ where θ is the included angle between the two
vectors. Thus

|u · v| = |u| |v| |cos θ| ≤ |u| |v|
and equality holds if and only if θ = 0 or π. This means that the two vectors either point in
the same direction or opposite directions. Hence one is a multiple of the other.

2. For u,v vectors in R
3, define the product, u ∗ v ≡ u1v1 +2u2v2 +3u3v3. Show the axioms for

a dot product all hold for this funny product. Prove

|u ∗ v| ≤ (u ∗ u)1/2 (v ∗ v)1/2 .

Hint: Do not try to do this with methods from trigonometry.

This follows from the Cauchy Schwarz inequality and the proof of Theorem 3.2.15 which only
used the properties of the dot product. This new product has the same properties the Cauchy
Schwarz inequality holds for it as well.

3. Find the angle between the vectors 3i− j− k and i+ 4j+ 2k.
(3,−1,−1)·(1,4,2)
√

9+1+1
√

1+16+4
= − 1

77

√
11
√
21 = −0.197 39 = cos θ

−0.197 39 = cos θ, Thus θ = 1. 769 5 radians.
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Exercises 9

4. Find the angle between the vectors i− 2j+ k and i+ 2j− 7k.
−8

√

1+4+1
√

1+4+49
= −0.444 44 = cos θ

−0.444 44 = cos θ, θ = 2. 031 3 radians.

5. Find proju (v) where v = (1, 0,−2) and u = (1, 2, 3) .
u·v

u·u
u =−5

14
(1, 2, 3) =

(

− 5

14
− 5

7
− 15

14

)

6. Find proju (v) where v = (1, 2,−2) and u = (1, 0, 3) .
u·v

u·u
u =−5

10
(1, 0, 3) =

(

− 1

2
0 − 3

2

)

7. Find proju (v) where v = (1, 2,−2, 1) and u =(1, 2, 3, 0) .

u·v

u·u
u = (1,2,−2,1)·(1,2,3,0)

1+4+9
(1, 2, 3, 0) =

(

− 1

14
− 1

7
− 3

14
0

)

8. Does it make sense to speak of proj0 (v)?

No, it does not. The 0 vector has no direction and the formula doesn’t make sense either.

9. If F is a force and D is a vector, show projD (F) = (|F| cos θ)u where u is the unit vector in
the direction of D, u = D/ |D| and θ is the included angle between the two vectors, F and D.
|F| cos θ is sometimes called the component of the force, F in the direction D.

projD (F) ≡ F·D

|D|

D

|D|
= (|F| cos θ) D

|D|
= (|F| cos θ)u

10. Prove the Cauchy Schwarz inequality in Rn as follows. For u,v vectors, consider

(u− projv u) · (u− projv u) ≥ 0

Now simplify using the axioms of the dot product and then put in the formula for the projection.
Of course this expression equals 0 and you get equality in the Cauchy Schwarz inequality if
and only if u = projv u. What is the geometric meaning of u = projv u?

(

u−u · v
|v|2

v

)

·
(

u−u · v
|v|2

v

)

= |u|2 − 2 (u · v)2 1

|v|2
+ (u · v)2 1

|v|2
≥ 0

And so
|u|2 |v|2 ≥ (u · v)2

You get equality exactly when u = projv u = u·v

|v|
2v, in other words, when u is a multiple of v.

11. A boy drags a sled for 100 feet along the ground by pulling on a rope which is 20 degrees from
the horizontal with a force of 40 pounds. How much work does this force do?

40 cos
(

20

180
π
)

100 = 3758. 8

12. A girl drags a sled for 200 feet along the ground by pulling on a rope which is 30 degrees from
the horizontal with a force of 20 pounds. How much work does this force do?

20 cos
(

π

6

)

200 = 3464. 1

13. A large dog drags a sled for 300 feet along the ground by pulling on a rope which is 45 degrees
from the horizontal with a force of 20 pounds. How much work does this force do?

20
(

cos π

4

)

300 = 4242. 6

14. How much work in Newton meters does it take to slide a crate 20 meters along a loading dock
by pulling on it with a 200 Newton force at an angle of 30◦ from the horizontal?

200
(

cos
(

π

6

))

20 = 3464. 1
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15. An object moves 10 meters in the direction of j. There are two forces acting on this object,
F1 = i + j + 2k, and F2 = −5i + 2j−6k. Find the total work done on the object by the two
forces. Hint: You can take the work done by the resultant of the two forces or you can add
the work done by each force. Why?

(−4, 3,−4) · (0, 1, 0)× 10 = 30

You can consider the resultant of the two forces because of the properties of the dot product.
See the next problem for the explanation.

16. An object moves 10 meters in the direction of j+ i. There are two forces acting on this object,
F1 = i + 2j + 2k, and F2 = 5i + 2j−6k. Find the total work done on the object by the two
forces. Hint: You can take the work done by the resultant of the two forces or you can add
the work done by each force. Why?

F1 ·
(

1
√

2
, 1
√

2
, 0
)

10 + F2 ·
(

1
√

2
, 1
√

2
, 0
)

10 = (F1 + F2) ·
(

1
√

2
, 1
√

2
, 0
)

10

= (6, 4,−4) ·
(

1
√

2
, 1
√

2
, 0
)

10 = 50
√
2

17. An object moves 20 meters in the direction of k+ j. There are two forces acting on this object,
F1 = i+ j+2k, and F2 = i+2j−6k. Find the total work done on the object by the two forces.
Hint: You can take the work done by the resultant of the two forces or you can add the work
done by each force.

(2, 3,−4) ·
(

0, 1
√

2
, 1
√

2

)

20 = −10
√
2

18. If a,b, and c are vectors. Show that (b+ c)
⊥

= b
⊥
+ c

⊥
where b

⊥
= b−proja (b) .

b−proja (b) + c− proja (c) = b+ c− (proja (b) + proja (c)) = b+ c− proja (b+ c)

because proja (b) + proja (c) =

c · a
|a|2

a+
b · a
|a|2

a =
(c+ b) ·a
|a|2

a =proj
a
(b+ c)

19. Find (1, 2, 3, 4) · (2, 0, 1, 3) .
(1, 2, 3, 4) · (2, 0, 1, 3) = 17

20. Show that (a · b) = 1

4

[

|a+ b|2 − |a− b|2
]

.

1

4

[

|a+ b|2 − |a− b|2
]

=
1

4
(a · a+ b · b+ 2a · b− (a · a+ b · b− 2a · b))

= a · b

21. Prove from the axioms of the dot product the parallelogram identity, |a+ b|2 + |a− b|2 =

2 |a|2 + 2 |b|2 .
Start with the left side.

|a+ b|2 + |a− b|2 =

|a|2 + |b|2 + 2a · b+ |a|2 + |b|2 − 2a · b

= 2 |a|2 + 2 |b|2
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B.5 Exercises 3.6

1. Show that if a× u = 0 for all unit vectors, u, then a = 0.

If a 6= 0, then the condition says that |a× u|= |a| sin θ = 0 for all angles θ. Hence a = 0 after
all.

2. Find the area of the triangle determined by the three points, (1, 2, 3) , (4, 2, 0) and (−3, 2, 1) .
(3, 0,−3)× (−4, 0,−2) =

(

0 18 0
)

. So the area is 9.

3. Find the area of the triangle determined by the three points, (1, 0, 3) , (4, 1, 0) and (−3, 1, 1) .
(3, 1,−3)× (−4, 1,−2) =

(

1 18 7
)

1

2

√

1 + (18)
2
+ 49 =

1

2

√
374

4. Find the area of the triangle determined by the three points, (1, 2, 3) , (2, 3, 4) and (3, 4, 5) .
Did something interesting happen here? What does it mean geometrically?

(1, 1, 1)× (2, 2, 2) =
(

0 0 0
)

The area is 0. It means the three points are on the same line.

5. Find the area of the parallelogram determined by the vectors, (1, 2, 3) and (3,−2, 1) .
(1, 2, 3)× (3,−2, 1) =

(

8 8 −8
)

. The area is 8
√
3

6. Find the area of the parallelogram determined by the vectors, (1, 0, 3) and (4,−2, 1) .
(1, 0, 3)× (4,−2, 1) =

(

6 11 −2
)

. Area is
√
36 + 121 + 4 =

√
161

7. Find the volume of the parallelepiped determined by the vectors, i−7j−5k, i−2j−6k,3i+2j+3k.
∣

∣

∣

∣

∣

∣

1 −7 −5
1 −2 −6
3 2 3

∣

∣

∣

∣

∣

∣

= 113

8. Suppose a,b, and c are three vectors whose components are all integers. Can you conclude the
volume of the parallelepiped determined from these three vectors will always be an integer?

Yes. It will involve the sum of product of integers and so it will be an integer.

9. What does it mean geometrically if the box product of three vectors gives zero?

It means that if you place them so that they all have their tails at the same point, the three
will lie in the same plane.

10. Using Problem 9, find an equation of a plane containing the two two position vectors, a and
b and the point 0. Hint: If (x, y, z) is a point on this plane the volume of the parallelepiped
determined by (x, y, z) and the vectors a,b equals 0.

x· (a× b) = 0

11. Using the notion of the box product yielding either plus or minus the volume of the paral-
lelepiped determined by the given three vectors, show that

(a× b) ·c = a· (b× c)

In other words, the dot and the cross can be switched as long as the order of the vectors
remains the same. Hint: There are two ways to do this, by the coordinate description of the
dot and cross product and by geometric reasoning. It is better if you use geometric reasoning.
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-

�

3

a

b

c

6
a× b

θ -

�

3

a

b

c

R
b× c

α

In the picture, you have the same parallelepiped. The one on the left involves a× b · c which
is equal to |a× b| |c| cos θ which is the area of the base determined by a,b times the altitude
which equals |c| cos θ. In the second picture, the altitude is measured from the base determined
by c,b. This altitude is |a| cosα and the area of the new base is |c× d|. Hence the volume of
the parallelepiped, determined in this other way is |b× c| |a| cosα which equals a · b× c. Thus
both a · b× c and a× b · c yield the same thing and it is the volume of the parallelepiped. If
you switch two of the vectors, then the sign would change but in this case, both expressions
would give −1 times the volume of the parallelepiped.

12. Is a× (b× c) = (a× b)×c? What is the meaning of a× b× c? Explain. Hint: Try (i× j)×j.
(i× j)×j = k× j = −i. However, i× (j× j) = 0 and so the cross product is not associative.

13. Discover a vector identity for (u× v)×w and one for u× (v ×w).

((u× v)×w)
i

= εijk (u× v)
j
wk = εijkεjrsurvswk

= −εjikεjrsurvswk = − (δirδks − δkrδis) urvswk

= ukviwk − uivkwk = ((u ·w)v− (v ·w)u)
i

Hence
(u× v)×w = (u ·w)v− (v ·w)u

You can do the same thing for the other one or you could do the following.

u× (v ×w) = − (v ×w)× u = − [(v · u)w− (w · u)v]
= (w · u)v− (v · u)w

14. Discover a vector identity for (u× v)× (z×w).

It is easiest to use the identity just discovered, although you could do it directly with the
permutation symbol and reduction identity. The expression equals

u· (z×w)v − v· (z×w)u = [u, z,w]v− [v, z,w]u

Here [u, z,w] denotes the box product.

15. Simplify (u× v) · (v ×w)× (w× z) .

Consider the cross product term. From the above,

(v ×w)× (w × z) = [v,w, z]w− [w,w, z]v

= [v,w, z]w
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Thus it reduces to
(u× v) · [v,w, z]w = [v,w, z] [u,v,w]

16. Simplify |u× v|2 + (u · v)2 − |u|2 |v|2 .

|u× v|2 = εijkujvkεirsurvs = (δjrδks − δkrδjs)urvsujvk

= ujvkujvk − ukvjujvk = |u|2 |v|2 − (u · v)2

It follows that the expression reduces to 0. You can also do the following.

|u× v|2 = |u|2 |v|2 sin2 θ
= |u|2 |v|2

(

1− cos2 θ
)

= |u|2 |v|2 − |u|2 |v|2 cos2 θ
= |u|2 |v|2 − (u · v)2

which implies the expression equals 0.

17. For u,v,w functions of t, show the product rules

(u× v)
′

= u
′ × v + u× v

′

(u · v)′ = u
′ · v + u · v′

You can do this more elegantly by repeating the proof of the product rule given in calculus
and using the properties of the two products. However, I will show it using the summation
convention and permutation symbol.

(

(u× v)′
)

i

≡ ((u× v)
i
)′ = (εijkujvk)

′

= εijku
′

j
vk + εijkukv

′

k
= (u′×v + u× v

′)
i

and so (u× v)′ = u
′×v + u× v

′. Similar but easier reasoning shows the next one.

18. If u is a function of t, and the magnitude |u (t)| is a constant, show from the above problem
that the velocity u

′ is perpendicular to u.

u · u = c where c is a constant. Differentiate both sides.

u
′ · u+ u · u′ = 0

Hence u′ ·u = 0. For example, if you move about on the surface of a sphere, then your velocity
will be perpendicular to the position vector from the center of the sphere.

19. When you have a rotating rigid body with angular velocity vector Ω, then the velocity vector
v ≡ u

′ is given by
v = Ω× u

where u is a position vector. The acceleration is the derivative of the velocity. Show that if Ω
is a constant vector, then the acceleration vector a = v

′ is given by the formula

a = Ω× (Ω× u) .

Now simplify the expression. It turns out this is centripetal acceleration.

a = v
′ = Ω× u

′ = Ω× (Ω× u)
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Of course you can simplify the right side. It equals

a = (Ω · u)Ω− (Ω ·Ω)u

Also, its magnitude is |Ω| |Ω× u| = |Ω|2 |u| sin θ and is perpendicular to Ω.

20. Verify directly that the coordinate description of the cross product, a× b has the property
that it is perpendicular to both a and b. Then show by direct computation that this coordinate
description satisfies

|a× b|2 = |a|2 |b|2 − (a · b)2

= |a|2 |b|2
(

1− cos2 (θ)
)

where θ is the angle included between the two vectors. Explain why |a× b| has the correct
magnitude. All that is missing is the material about the right hand rule. Verify directly from
the coordinate description of the cross product that the right thing happens with regards to
the vectors i, j,k. Next verify that the distributive law holds for the coordinate description of
the cross product. This gives another way to approach the cross product. First define it in
terms of coordinates and then get the geometric properties from this. However, this approach
does not yield the right hand rule property very easily.

From the coordinate description,

a× b · a = εijkajbkai = −εjikajbkai = −εjikbkaiaj = −a× b · a

and so a× b is perpendicular to a. Similarly, a× b is perpendicular to b. The Problem 16
above shows that

|a× b|2 = |a|2 |b|2
(

1− cos2 θ
)

= |a|2 |b|2 sin2 θ
and so |a× b| = |a| |b| sin θ, the area of the parallelogram determined by a,b. Only the
right hand rule is a little problematic. However, you can see right away from the component
definition that the right hand rule holds for each of the standard unit vectors. Thus i× j = k

etc.
∣

∣

∣

∣

∣

∣

i j k

1 0 0
0 1 0

∣

∣

∣

∣

∣

∣

= k

B.6 Exercises 4.3

1. Find the point, (x1, y1) which lies on both lines, x+ 3y = 1 and 4x− y = 3.

x+ 3y = 1
4x− y = 3

, Solution is:
[

x = 10

13
, y = 1

13

]

2. Solve Problem 1 graphically. That is, graph each line and see where they intersect.

3. Find the point of intersection of the two lines 3x+ y = 3 and x+ 2y = 1.

3x+ y = 3
x+ 2y = 1

, Solution is: [x = 1, y = 0]

4. Solve Problem 3 graphically. That is, graph each line and see where they intersect.

5. Do the three lines, x+2y = 1, 2x−y = 1, and 4x+3y = 3 have a common point of intersection?
If so, find the point and if not, tell why they don’t have such a common point of intersection.

x+ 2y = 1
2x− y = 1
4x+ 3y = 3

, Solution is:
[

x = 3

5
, y = 1

5

]

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



Exercises 15

6. Do the three planes, x + y − 3z = 2, 2x + y + z = 1, and 3x + 2y − 2z = 0 have a common
point of intersection? If so, find one and if not, tell why there is no such point.

No solution exists. You can see this by writing the augmented matrix and doing row operations.




1 1 −3 2
2 1 1 1
3 2 −2 0



, row echelon form:





1 0 4 0
0 1 −7 0
0 0 0 1



 . Thus one of the equations says

0 = 1 in an equivalent system of equations.

7. You have a system of k equations in two variables, k ≥ 2. Explain the geometric significance
of

(a) No solution.

(b) A unique solution.

(c) An infinite number of solutions.

8. Here is an augmented matrix in which ∗ denotes an arbitrary number and � denotes a nonzero
number. Determine whether the given augmented matrix is consistent. If consistent, is the
solution unique?









� ∗ ∗ ∗ ∗ | ∗
0 � ∗ ∗ 0 | ∗
0 0 � ∗ ∗ | ∗
0 0 0 0 � | ∗









It appears that the solution exists but is not unique.

9. Here is an augmented matrix in which ∗ denotes an arbitrary number and � denotes a nonzero
number. Determine whether the given augmented matrix is consistent. If consistent, is the
solution unique?





� ∗ ∗ | ∗
0 � ∗ | ∗
0 0 � | ∗





It appears that there is a unique solution.

10. Here is an augmented matrix in which ∗ denotes an arbitrary number and � denotes a nonzero
number. Determine whether the given augmented matrix is consistent. If consistent, is the
solution unique?









� ∗ ∗ ∗ ∗ | ∗
0 � 0 ∗ 0 | ∗
0 0 0 � ∗ | ∗
0 0 0 0 � | ∗









11. Here is an augmented matrix in which ∗ denotes an arbitrary number and � denotes a nonzero
number. Determine whether the given augmented matrix is consistent. If consistent, is the
solution unique?









� ∗ ∗ ∗ ∗ | ∗
0 � ∗ ∗ 0 | ∗
0 0 0 0 � | 0
0 0 0 0 ∗ | �









There might be a solution. If so, there are infinitely many.

12. Suppose a system of equations has fewer equations than variables. Must such a system be
consistent? If so, explain why and if not, give an example which is not consistent.

No. Consider x+ y + z = 2 and x+ y + z = 1.
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13. If a system of equations has more equations than variables, can it have a solution? If so, give
an example and if not, tell why not.

These can have a solution. For example, x + y = 1, 2x + 2y = 2, 3x + 3y = 3 even has an
infinite set of solutions.

14. Find h such that
(

2 h | 4
3 6 | 7

)

is the augmented matrix of an inconsistent matrix.

h = 4

15. Find h such that
(

1 h | 3
2 4 | 6

)

is the augmented matrix of a consistent matrix.

Any h will work.

16. Find h such that
(

1 1 | 4
3 h | 12

)

is the augmented matrix of a consistent matrix.

Any h will work.

17. Choose h and k such that the augmented matrix shown has one solution. Then choose h and
k such that the system has no solutions. Finally, choose h and k such that the system has
infinitely many solutions.

(

1 h | 2
2 4 | k

)

.

If h 6= 2 there will be a unique solution for any k. If h = 2 and k 6= 4, there are no solutions.
If h = 2 and k = 4, then there are infinitely many solutions.

18. Choose h and k such that the augmented matrix shown has one solution. Then choose h and
k such that the system has no solutions. Finally, choose h and k such that the system has
infinitely many solutions.

(

1 2 | 2
2 h | k

)

.

If h 6= 4, then there is exactly one solution. If h = 4 and k 6= 4, then there are no solutions. If
h = 4 and k = 4, then there are infinitely many solutions.

19. Determine if the system is consistent. If so, is the solution unique?

x+ 2y + z − w = 2
x− y + z + w = 1
2x+ y − z = 1
4x+ 2y + z = 5

There is no solution. The system is inconsistent. You can see this from the augmented matrix.








1 2 1 −1 2
1 −1 1 1 1
2 1 −1 0 1
4 2 1 0 5









, row echelon form:









1 0 0 1

3
0

0 1 0 − 2

3
0

0 0 1 0 0
0 0 0 0 1









.
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20. Determine if the system is consistent. If so, is the solution unique?

x+ 2y + z − w = 2
x− y + z + w = 0
2x+ y − z = 1
4x+ 2y + z = 3

Solution is:
[

w = 3

2
y − 1, x = 2

3
− 1

2
y, z = 1

3

]

21. Find the general solution of the system whose augmented matrix is





1 2 0 | 2
1 3 4 | 2
1 0 2 | 1



 .

22. Find the general solution of the system whose augmented matrix is





1 2 0 | 2
2 0 1 | 1
3 2 1 | 3



 .

The row reduced echelon form is





1 0 1

2

1

2

0 1 − 1

4

3

4

0 0 0 0



 . Therefore, the solution is of the form

z = t, y = 3

4
+ t

(

1

4

)

, x = 1

2
− 1

2
t where t ∈ R.

23. Find the general solution of the system whose augmented matrix is

(

1 1 0 | 1
1 0 4 | 2

)

.

The row reduced echelon form is

(

1 0 4 2
0 1 −4 −1

)

and so the solution is z = t, y = 4t, x =

2− 4t.

24. Find the general solution of the system whose augmented matrix is









1 0 2 1 1 | 2
0 1 0 1 2 | 1
1 2 0 0 1 | 3
1 0 1 0 2 | 2









.

The row reduced echelon form is









1 0 0 0 9 3
0 1 0 0 −4 0
0 0 1 0 −7 −1
0 0 0 1 6 1









and so

x5 = t, x4 = 1− 6t, x3 = −1 + 7t, x2 = 4t, x1 = 3− 9t

25. Find the general solution of the system whose augmented matrix is









1 0 2 1 1 | 2
0 1 0 1 2 | 1
0 2 0 0 1 | 3
1 −1 2 2 2 | 0









.
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The row reduced echelon form is









1 0 2 0 − 1

2

5

2

0 1 0 0 1

2

3

2

0 0 0 1 3

2
− 1

2

0 0 0 0 0 0









. Therefore, let x5 = t, x3 = s.

Then the other variables are given by x4 = − 1

2
− 3

2
t, x2 = 3

2
− t 1

2
, , x1 = 5

2
+ 1

2
t− 2s.

26. Give the complete solution to the system of equations, 7x+14y+15z = 22, 2x+4y+3z = 5,
and 3x+ 6y + 10z = 13.

Solution is: [x = 1− 2t, z = 1, y = t]

27. Give the complete solution to the system of equations, 3x − y + 4z = 6, y + 8z = 0, and
−2x+ y = −4.
Solution is: [x = 2− 4t, y = −8t, z = t]

28. Give the complete solution to the system of equations, 9x−2y+4z = −17, 13x−3y+6z = −25,
and −2x− z = 3.

Solution is: [x = −1, y = 2, z = −1]
29. Give the complete solution to the system of equations, 65x+84y+16z = 546, 81x+105y+20z =

682, and 84x+ 110y + 21z = 713.

Solution is: [x = 2, y = 4, z = 5]

30. Give the complete solution to the system of equations, 8x+ 2y+ 3z = −3, 8x+3y+3z = −1,
and 4x+ y + 3z = −9.
Solution is: [x = 1, y = 2, z = −5]

31. Give the complete solution to the system of equations, −8x+2y+5z = 18,−8x+3y+5z = 13,
and −4x+ y + 5z = 19.

Solution is: [x = −1, y = −5, z = 4]

32. Give the complete solution to the system of equations, 3x − y − 2z = 3, y − 4z = 0, and
−2x+ y = −2.
Solution is: [x = 2t+ 1, y = 4t, z = t]

33. Give the complete solution to the system of equations, −9x + 15y = 66,−11x + 18y = 79
,−x+ y = 4, and z = 3.

Solution is: [x = 1, y = 5, z = 3]

34. Give the complete solution to the system of equations, −19x+8y = −108, −71x+30y = −404,
−2x+ y = −12, 4x+ z = 14.

Solution is: [x = 4, y = −4, z = −2]
35. Consider the system −5x+2y− z = 0 and −5x− 2y− z = 0. Both equations equal zero and so

−5x+ 2y − z = −5x− 2y − z which is equivalent to y = 0. Thus x and z can equal anything.
But when x = 1, z = −4, and y = 0 are plugged in to the equations, it doesn’t work. Why?

These are not legitimate row operations. They do not preserve the solution set of the system.

36. Four times the weight of Gaston is 150 pounds more than the weight of Ichabod. Four times
the weight of Ichabod is 660 pounds less than seventeen times the weight of Gaston. Four
times the weight of Gaston plus the weight of Siegfried equals 290 pounds. Brunhilde would
balance all three of the others. Find the weights of the four sisters.

4g − I = 150
4I − 17g = −660
4g + s = 290

g + I + s− b = 0

, Solution is : {g = 60, I = 90, b = 200, s = 50}
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37. The steady state temperature, u in a plate solves Laplace’s equation, ∆u = 0. One way to
approximate the solution which is often used is to divide the plate into a square mesh and
require the temperature at each node to equal the average of the temperature at the four
adjacent nodes. This procedure is justified by the mean value property of harmonic functions.
In the following picture, the numbers represent the observed temperature at the indicated
nodes. Your task is to find the temperature at the interior nodes, indicated by x, y, z, and w.
One of the equations is z = 1

4
(10 + 0 + w + x).

1010

20

20 x

y

z

w

3030

0

0

You need

1

4
(20 + 30 + w + x)− y = 0

1

4
(y + 30 + 0 + z)− w = 0

1

4
(20 + y + z + 10)− x = 0

1

4
(x+ w + 0 + 10)− z = 0

, Solution is: [w = 15, x = 15, y = 20, z = 10] .

B.7 Exercises 5.2

1. Here are some matrices:

A =

(

1 2 3
2 1 7

)

, B =

(

3 −1 2
−3 2 1

)

,

C =

(

1 2
3 1

)

, D =

(

−1 2
2 −3

)

, E =

(

2
3

)

.

Find if possible −3A, 3B −A,AC,CB,AE,EA. If it is not possible explain why.
(

−3 −6 −9
−6 −3 −21

)

,

(

8 −5 3
−11 5 −4

)

,Not possible,

(

−3 3 4
6 −1 7

)

, Not possible, Not

possible.

2. Here are some matrices:

A =





1 2
3 2
1 −1



 , B =

(

2 −5 2
−3 2 1

)

,

C =

(

1 2
5 0

)

, D =

(

−1 1
4 −3

)

, E =

(

1
3

)

.

Find if possible −3A, 3B −A,AC,CA,AE,EA,BE,DE. If it is not possible explain why.

3. Here are some matrices:

A =





1 2
3 2
1 −1



 , B =

(

2 −5 2
−3 2 1

)

,

C =

(

1 2
5 0

)

, D =

(

−1 1
4 −3

)

, E =

(

1
3

)

.
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Find if possible −3AT , 3B −AT , AC,CA,AE,ETB,BE,DE,EET , ETE. If it is not possible
explain why.

(

−3 −9 −3
−6 −6 3

)

,

(

5 −18 5
−11 4 4

)

,





11 2
13 6
−4 2



 ,

Not possible,





7
9
−2



 ,
(

−7 1 5
)

, Not possible,

(

2
−5

)

,

(

1 3
3 9

)

, 10

4. Here are some matrices:

A =





1 2
3 2
1 −1



 , B =

(

2 −5 2
−3 2 1

)

,

C =

(

1 2
5 0

)

, D =

(

−1
4

)

, E =

(

1
3

)

.

Find the following if possible and explain why it is not possible if this is the case. AD,DA,DTB,DTBE,ETD,DET .




7
5
−5



 , Not possible,
(

−14 13 2
)

, Not possible, 11,

(

−1 −3
4 12

)

5. Let A =





1 1
−2 −1
1 2



, B =

(

1 −1 −2
2 1 −2

)

, and C =





1 1 −3
−1 2 0
−3 −1 0



 . Find if possi-

ble.

(a) AB =





3 0 −4
−4 1 6
5 1 −6





(b) BA =

(

1 −2
−2 −3

)

(c) AC =Not possible.

(d) CA =





−4 −6
−5 −3
−1 −2





(e) CB =Not possible.

(f) BC =

(

8 1 −3
7 6 −6

)

6. Suppose A and B are square matrices of the same size. Which of the following are correct?

(a) (A−B)
2
= A2 − 2AB +B2

(b) (AB)
2
= A2B2

(c) (A+B)
2
= A2 + 2AB +B2

(d) (A+B)
2
= A2 +AB +BA+B2

(e) A2B2 = A (AB)B

(f) (A+B)3 = A3 + 3A2B + 3AB2 +B3

(g) (A+B) (A− B) = A2 −B2

Part d,e.
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7. Let A =

(

−1 −1
3 3

)

. Find all 2× 2 matrices, B such that AB = 0.

(

−1 −1
3 3

)(

x y
z w

)

=

(

−x− z −w − y
3x+ 3z 3w + 3y

)

=

(

0 0
0 0

)

and so you have to solve

Solution is: [w = −y, x = −z] So the matrices are of the form

(

x y
−x −y

)

.

8. Let x =(−1,−1, 1) and y =(0, 1, 2) . Find x
T
y and xy

T if possible.




0 −1 −2
0 −1 −2
0 1 2



 , 1

9. Let A =

(

1 2
3 4

)

, B =

(

1 2
3 k

)

. Is it possible to choose k such that AB = BA? If so,

what should k equal?
(

1 2
3 4

)(

1 2
3 k

)

=

(

7 2k + 2
15 4k + 6

)

(

1 2
3 k

)(

1 2
3 4

)

=

(

7 10
3k + 3 4k + 6

)

Thus you must have

3k + 3 = 15
2k + 2 = 10

, Solution is: [k = 4]

10. Let A =

(

1 2
3 4

)

, B =

(

1 2
1 k

)

. Is it possible to choose k such that AB = BA? If so,

what should k equal?
(

1 2
3 4

)(

1 2
1 k

)

=

(

3 2k + 2
7 4k + 6

)

(

1 2
1 k

)(

1 2
3 4

)

=

(

7 10
3k + 1 4k + 2

)

However, 7 6= 3 and so there is no possible choice of k which will make these matrices commute.

11. In 5.1 - 5.8 describe −A and 0.

To get −A, just replace every entry of A with its additive inverse. The 0 matrix is the one
which has all zeros in it.

12. Let A be an n × n matrix. Show A equals the sum of a symmetric and a skew symmetric
matrix. (M is skew symmetric if M = −MT . M is symmetric if MT = M .) Hint: Show that
1

2

(

AT + A
)

is symmetric and then consider using this as one of the matrices.

A = A+A
T

2
+ A−A

T

2
.

13. Show every skew symmetric matrix has all zeros down the main diagonal. The main diagonal
consists of every entry of the matrix which is of the form aii. It runs from the upper left down
to the lower right.

If A = −AT , then aii = −aii and so each aii = 0.

14. Suppose M is a 3 × 3 skew symmetric matrix. Show there exists a vector Ω such that for all
u ∈ R3

Mu = Ω× u
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Hint: Explain why, since M is skew symmetric it is of the form

M =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0





where the ωi are numbers. Then consider ω1i+ ω2j+ ω3k.

Since M is skew symmetric, it is of the form mentioned above. Now it just remains to verify

that Ω ≡ω1i+ω2j+ω3k is of the right form. But

∣

∣

∣

∣

∣

∣

i j k
ω1 ω2 ω3

u1 u2 u3

∣

∣

∣

∣

∣

∣

= iω2u3− iω3u2− jω1u3+

jω3u1 + kω1u2 − kω2u1. In terms of matrices, this is





ω2u3 − ω3u2

−ω1u3 + ω3u1

ω1u2 − ω2u1



 . If you multiply by

the matrix, you get





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0









u1

u2

u3



 =





ω2u3 − ω3u2

ω3u1 − ω1u3

ω1u2 − ω2u1





which is the same thing.

15. Using only the properties 5.1 - 5.8 show −A is unique.

Suppose B also works. Then

−A = −A+ (A+B) = (−A+A) +B = 0 +B = B

16. Using only the properties 5.1 - 5.8 show 0 is unique.

Suppose 0′ is another one. Then 0′ = 0′ + 0 = 0.

17. Using only the properties 5.1 - 5.8 show 0A = 0. Here the 0 on the left is the scalar 0 and the
0 on the right is the zero for m× n matrices.

0A = (0 + 0)A = 0A+ 0A. Now add − (0A) to both sides. Then 0 = 0A.

18. Using only the properties 5.1 - 5.8 and previous problems show (−1)A = −A.
A + (−1)A = (1 + (−1))A = 0A = 0. Therefore, from the uniqueness of the additive inverse
proved in the above Problem 15, it follows that −A = (−1)A.

19. Prove 5.17.
(

(αA+ βB)
T

)

ij

= (αA+ βB)
ji
= αAji + βBji

= α
(

AT

)

ij

+ (βB)
T

ij
=

(

αAT + βBT

)

ij

20. Prove that ImA = A where A is an m× n matrix.

(ImA)
ij
≡∑

j
δikAkj = Aij .

21. Give an example of matrices, A,B,C such that B 6= C, A 6= 0, and yet AB = AC.
(

1 −1
−1 1

)(

1 1
1 1

)

=

(

0 0
0 0

)

(

1 −1
−1 1

)(

2 2
2 2

)

=

(

0 0
0 0

)
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22. Suppose AB = AC and A is an invertible n× n matrix. Does it follow that B = C? Explain
why or why not. What if A were a non invertible n× n matrix?

Yes. Multiply on the left by A−1.

23. Find your own examples:

(a) 2× 2 matrices, A and B such that A 6= 0, B 6= 0 with AB 6= BA.
(

0 1
1 0

)(

1 2
3 4

)

=

(

3 4
1 2

)

(

1 2
3 4

)(

0 1
1 0

)

=

(

2 1
4 3

)

(b) 2× 2 matrices, A and B such that A 6= 0, B 6= 0, but AB = 0.
(

1 −1
−1 1

)(

1 1
1 1

)

=

(

0 0
0 0

)

(c) 2× 2 matrices, A, D, and C such that A 6= 0, C 6= D, but AC = AD.
(

1 −1
−1 1

)(

1 1
1 1

)

=

(

0 0
0 0

)

(

1 −1
−1 1

)(

2 2
2 2

)

=

(

0 0
0 0

)

24. Explain why if AB = AC and A−1 exists, then B = C.

Because you can multiply on the left by A−1.

25. Give an example of a matrix, A such that A2 = I and yet A 6= I and A 6= −I.




1 0 0
0 −1 0
0 0 1





26. Give an example of matrices, A,B such that neither A nor B equals zero and yet AB = 0.
(

1 −1
−1 1

)(

1 1
1 1

)

=

(

0 0
0 0

)

27. Give another example other than the one given in this section of two square matrices, A and
B such that AB 6= BA.
(

3 −7
5 11

)(

7 −8
2 0

)

=

(

7 −24
57 −40

)

(

7 −8
2 0

)(

3 −7
5 11

)

=

(

−19 −137
6 −14

)

28. Let

A =

(

2 1
−1 3

)

.

Find A−1 if possible. If A−1 does not exist, determine why.
(

2 1
−1 3

)

−1

=

(

3

7
− 1

7
1

7

2

7

)

29. Let

A =

(

0 1
5 3

)

.

Find A−1 if possible. If A−1 does not exist, determine why.
(

0 1
5 3

)

−1

=

(

− 3

5

1

5

1 0

)
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30. Let

A =

(

2 1
3 0

)

.

Find A−1 if possible. If A−1 does not exist, determine why.
(

2 1
3 0

)

−1

=

(

0 1

3

1 − 2

3

)

31. Let

A =

(

2 1
4 2

)

.

Find A−1 if possible. If A−1 does not exist, determine why.
(

2 1
4 2

)

−1

does not exist. The row reduced echelon form of this matrix is

(

1 1

2

0 0

)

.

32. Let A be a 2× 2 matrix which has an inverse. Say A =

(

a b
c d

)

. Find a formula for A−1 in

terms of a, b, c, d.
(

a b
c d

)

−1

=

(

d

ad−bc
− b

ad−bc

− c

ad−bc

a

ad−bc

)

33. Let

A =





1 2 3
2 1 4
1 0 2



 .

Find A−1 if possible. If A−1 does not exist, determine why.




1 2 3
2 1 4
1 0 2





−1

=





−2 4 −5
0 1 −2
1 −2 3





34. Let

A =





1 0 3
2 3 4
1 0 2



 .

Find A−1 if possible. If A−1 does not exist, determine why.




1 0 3
2 3 4
1 0 2





−1

=





−2 0 3
0 1

3
− 2

3

1 0 −1





35. Let

A =





1 2 3
2 1 4
4 5 10



 .

Find A−1 if possible. If A−1 does not exist, determine why.




1 2 3
2 1 4
4 5 10



, row echelon form:





1 0 5

3

0 1 2

3

0 0 0



 . There is no inverse.

36. Let

A =









1 2 0 2
1 1 2 0
2 1 −3 2
1 2 1 2








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Find A−1 if possible. If A−1 does not exist, determine why.








1 2 0 2
1 1 2 0
2 1 −3 2
1 2 1 2









−1

=









−1 1

2

1

2

1

2

3 1

2
− 1

2
− 5

2

−1 0 0 1
−2 − 3

4

1

4

9

4









37. Write









x1 − x2 + 2x3

2x3 + x1

3x3

3x4 + 3x2 + x1









in the form A









x1

x2

x3

x4









where A is an appropriate matrix.

A =









1 −1 2 0
1 0 2 0
0 0 3 0
1 3 0 3









38. Write









x1 + 3x2 + 2x3

2x3 + x1

6x3

x4 + 3x2 + x1









in the form A









x1

x2

x3

x4









where A is an appropriate matrix.

A =









1 3 2 0
1 0 2 0
0 0 6 0
1 3 0 1









39. Write









x1 + x2 + x3

2x3 + x1 + x2

x3 − x1

3x4 + x1









in the form A









x1

x2

x3

x4









where A is an appropriate matrix.

A =









1 1 1 0
1 1 2 0
−1 0 1 0
1 0 0 3









40. Using the inverse of the matrix, find the solution to the systems





1 0 3
2 3 4
1 0 2









x
y
z



 =





1
2
3



 ,





1 0 3
2 3 4
1 0 2









x
y
z



 =





2
1
0









1 0 3
2 3 4
1 0 2









x
y
z



 =





1
0
1



 ,





1 0 3
2 3 4
1 0 2









x
y
z



 =





3
−1
−2



 .

Now give the solution in terms of a, b, and c to





1 0 3
2 3 4
1 0 2









x
y
z



 =





a
b
c



 .





1 0 3
2 3 4
1 0 2





−1

=





−2 0 3
0 1

3
− 2

3

1 0 −1



 . Therefore, the solutions desired are respectively





x
y
z



 =
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



−2 0 3
0 1

3
− 2

3

1 0 −1









1
2
3



 ,





−2 0 3
0 1

3
− 2

3

1 0 −1









2
1
0



 ,





−2 0 3
0 1

3
− 2

3

1 0 −1









1
0
1



 ,





−2 0 3
0 1

3
− 2

3

1 0 −1









3
−1
−2



 ,





−2 0 3
0 1

3
− 2

3

1 0 −1









a
b
c



 , which equal





7
− 4

3

−2



 ,





−4
1

3

2



 ,





1
− 2

3

0



 ,





−12
1
5



 ,





3c− 2a
1

3
b− 2

3
c

a− c





41. Using the inverse of the matrix, find the solution to the systems




1 0 3
2 3 4
1 0 2









x
y
z



 =





1
2
3



 ,





1 0 3
2 3 4
1 0 2









x
y
z



 =





2
1
0









1 0 3
2 3 4
1 0 2









x
y
z



 =





1
0
1



 ,





1 0 3
2 3 4
1 0 2









x
y
z



 =





3
−1
−2



 .

Now give the solution in terms of a, b, and c to




1 0 3
2 3 4
1 0 2









x
y
z



 =





a
b
c



 .

This one is just like the one above it.

42. Using the inverse of the matrix, find the solution to the system








−1 1

2

1

2

1

2

3 1

2
− 1

2
− 5

2

−1 0 0 1
−2 − 3

4

1

4

9

4

















x
y
z
w









=









a
b
c
d









.









−1 1

2

1

2

1

2

3 1

2
− 1

2
− 5

2

−1 0 0 1
−2 − 3

4

1

4

9

4









−1

=









1 2 0 2
1 1 2 0
2 1 −3 2
1 2 1 2









. Thus the solution is









x
y
z
w









=









1 2 0 2
1 1 2 0
2 1 −3 2
1 2 1 2

















a
b
c
d









=









a+ 2b+ 2d
a+ b+ 2c

2a+ b− 3c+ 2d
a+ 2b+ c+ 2d









43. Show that if A is an n × n invertible matrix and x is a n × 1 matrix such that Ax = b for b
an n× 1 matrix, then x = A−1

b.

Multiply on the left of both sides by A−1.

44. Prove that if A−1 exists and Ax = 0 then x = 0.

Multiply on both sides on the left by A−1. Thus

0 = A−1
0 = A−1 (Ax) =

(

A−1A
)

x = Ix = x
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45. Show that if A−1 exists for an n×n matrix, then it is unique. That is, if BA = I and AB = I,
then B = A−1.

A−1 = A−1I = A−1 (AB) =
(

A−1A
)

B = IB = B.

46. Show that if A is an invertible n× n matrix, then so is AT and
(

AT

)

−1
=

(

A−1
)

T

.

You just need to show that
(

A−1
)

T

acts like the inverse of AT because from uniqueness in the
above problem, this will imply it is the inverse. But from properties of the transpose,

AT

(

A−1
)

T

=
(

A−1A
)

T

= IT = I
(

A−1
)

T

AT =
(

AA−1
)

T

= IT = I

Hence
(

A−1
)

T

=
(

AT

)

−1
and this last matrix exists.

47. Show (AB)−1 = B−1A−1 by verifying that AB
(

B−1A−1
)

= I and B−1A−1 (AB) = I. Hint:

Use Problem 45.

(AB)B−1A−1 = A
(

BB−1
)

A−1 = AA−1 = I

B−1A−1 (AB) = B−1
(

A−1A
)

B = B−1IB = B−1B = I

48. Show that (ABC)
−1

= C−1B−1A−1 by verifying that (ABC)
(

C−1B−1A−1
)

= I and
(

C−1B−1A−1
)

(ABC) = I. Hint: Use Problem 45.

This is just like the above problem.

49. If A is invertible, show
(

A2
)

−1
=

(

A−1
)2

. Hint: Use Problem 45.

A2
(

A−1
)2

= AAA−1A−1 = AIA−1 = AA−1 = I
(

A−1
)2

A2 = A−1A−1AA = A−1IA = A−1A = I

50. If A is invertible, show
(

A−1
)

−1
= A. Hint: Use Problem 45.

A−1A = AA−1 = I and so by uniqueness,
(

A−1
)

−1
= A.

51. Let A and be a real m× n matrix and let x ∈ Rn and y ∈ Rm. Show (Ax,y)
Rm =

(

x,AT
y
)

Rn

where (·, ·)
Rk denotes the dot product in Rk. In the notation above, Ax · y = x·AT

y. Use the
definition of matrix multiplication to do this.

Ax · y =
∑

k
(Ax)

k
yk =

∑

k

∑

i
Akixiyk =

∑

i

∑

k
AT

ik
xiyk =

(

x,AT
y
)

52. Use the result of Problem 51 to verify directly that (AB)
T

= BTAT without making any
reference to subscripts.

(ABx,y) =
(

Bx,AT
y
)

=
(

x,BTAT
y
)

(ABx,y) =
(

x, (AB)
T

y

)

Since this is true for all x, it follows that, in particular, it holds for

x = BTAT

y− (AB)T y

and so from the axioms of the dot product,

(

BTAT

y− (AB)
T

y,BTAT

y− (AB)
T

y

)

= 0

and so BTAT
y− (AB)

T

y = 0. However, this is true for all y and so BTAT− (AB)
T

= 0.
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53. A matrix A is called a projection if A2 = A. Here is a matrix.





2 0 2
1 1 2
−1 0 −1





Show that this is a projection. Show that a vector in the column space of a projection is left
unchanged by multiplication by A.




2 0 2
1 1 2
−1 0 −1





2

=





2 0 2
1 1 2
−1 0 −1





A typical vector in the column space of A is Ax. Therefore,

A (Ax) = A2
x = Ax

B.8 Exercises 6.3

1. Find the determinants of the following matrices.

(a)





1 2 3
3 2 2
0 9 8



 (The answer is 31.)

(b)





4 3 2
1 7 8
3 −9 3



(The answer is 375.)

(c)









1 2 3 2
1 3 2 3
4 1 5 0
1 2 1 2









, (The answer is −2.)

2. Find the following determinant by expanding along the first row and second column.

∣

∣

∣

∣

∣

∣

1 2 1
2 1 3
2 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 2 1
2 1 3
2 1 1

∣

∣

∣

∣

∣

∣

= 6

3. Find the following determinant by expanding along the first column and third row.

∣

∣

∣

∣

∣

∣

1 2 1
1 0 1
2 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 2 1
1 0 1
2 1 1

∣

∣

∣

∣

∣

∣

= 2
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4. Find the following determinant by expanding along the second row and first column.

∣

∣

∣

∣

∣

∣

1 2 1
2 1 3
2 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 2 1
2 1 3
2 1 1

∣

∣

∣

∣

∣

∣

= 6

5. Compute the determinant by cofactor expansion. Pick the easiest row or column to use.

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 1
2 1 1 0
0 0 0 2
2 1 3 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 1
2 1 1 0
0 0 0 2
2 1 3 1

∣

∣

∣

∣

∣

∣

∣

∣

= −4

6. Find the determinant using row operations.

∣

∣

∣

∣

∣

∣

1 2 1
2 3 2
−4 1 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 2 1
2 3 2
−4 1 2

∣

∣

∣

∣

∣

∣

= −6

7. Find the determinant using row operations.

∣

∣

∣

∣

∣

∣

2 1 3
2 4 2
1 4 −5

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 1 3
2 4 2
1 4 −5

∣

∣

∣

∣

∣

∣

= −32

8. Find the determinant using row operations.

∣

∣

∣

∣

∣

∣

∣

∣

1 2 1 2
3 1 −2 3
−1 0 3 1
2 3 2 −2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 2 1 2
3 1 −2 3
−1 0 3 1
2 3 2 −2

∣

∣

∣

∣

∣

∣

∣

∣

= 63
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9. Find the determinant using row operations.

∣

∣

∣

∣

∣

∣

∣

∣

1 4 1 2
3 2 −2 3
−1 0 3 3
2 1 2 −2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 4 1 2
3 2 −2 3
−1 0 3 3
2 1 2 −2

∣

∣

∣

∣

∣

∣

∣

∣

= 211

10. Verify an example of each property of determinants found in Theorems 6.1.23 - 6.1.25 for 2×2
matrices.

This is routine. Here is the verification of the formula for products.

det

((

x y
z w

)(

a b
c d

))

= det

(

ax+ cy bx+ dy
cw + az dw + bz

)

= adwx − bcwx− adyz + bcyz

det

(

x y
z w

)

det

(

a b
c d

)

= (ad− bc) (wx − yz) = adwx − bcwx− adyz + bcyz

which is the same thing.

11. An operation is done to get from the first matrix to the second. Identify what was done and
tell how it will affect the value of the determinant.

(

a b
c d

)

,

(

a c
b d

)

It does not change the determinant. This was just taking the transpose.

12. An operation is done to get from the first matrix to the second. Identify what was done and
tell how it will affect the value of the determinant.

(

a b
c d

)

,

(

c d
a b

)

In this case two rows were switched and so the resulting determinant is −1 times the first.

13. An operation is done to get from the first matrix to the second. Identify what was done and
tell how it will affect the value of the determinant.

(

a b
c d

)

,

(

a b
a+ c b+ d

)

The determinant is unchanged. It was just the first row added to the second.

14. An operation is done to get from the first matrix to the second. Identify what was done and
tell how it will affect the value of the determinant.

(

a b
c d

)

,

(

a b
2c 2d

)

The second row was multiplied by 2 so the determinant of the result is 2 times the original
determinant.
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15. An operation is done to get from the first matrix to the second. Identify what was done and
tell how it will affect the value of the determinant.

(

a b
c d

)

,

(

b a
d c

)

In this case the two columns were switched so the determinant of the second is −1 times the
determinant of the first.

16. Let A be an r × r matrix and suppose there are r − 1 rows (columns) such that all rows
(columns) are linear combinations of these r − 1 rows (columns). Show det (A) = 0.

If the determinant is non zero, then this will be unchanged with row operations applied to
the matrix. However, by assumption, you can obtain a row of zeros by doing row operations.
Thus the determinant must have been zero after all.

17. Show det (aA) = an det (A) where here A is an n× n matrix and a is a scalar.

det (aA) = det (aIA) = det (aI) det (A) = an det (A) . The matrix which has a down the main
diagonal has determinant equal to an.

18. Illustrate with an example of 2 × 2 matrices that the determinant of a product equals the
product of the determinants.

det

((

1 2
3 4

)(

−1 2
−5 6

))

= −8

det

(

1 2
3 4

)

det

(

−1 2
−5 6

)

= −2 (4) = −8

19. Is it true that det (A+B) = det (A) + det (B)? If this is so, explain why it is so and if it is
not so, give a counter example.

This is not true at all. Consider A =

(

1 0
0 1

)

, B =

(

−1 0
0 −1

)

.

20. An n× n matrix is called nilpotent if for some positive integer, k it follows Ak = 0. If A is a
nilpotent matrix and k is the smallest possible integer such that Ak = 0, what are the possible
values of det (A)?

It must be 0 because 0 = det (0) = det
(

Ak

)

= (det (A))k .

21. A matrix is said to be orthogonal if ATA = I. Thus the inverse of an orthogonal matrix is
just its transpose. What are the possible values of det (A) if A is an orthogonal matrix?

You would need det
(

AAT

)

= det (A) det
(

AT

)

= det (A)
2
= 1 and so det (A) = 1, or −1.

22. Fill in the missing entries to make the matrix orthogonal as in Problem 21.













−1
√

2

1
√

6

√

12

6

1
√

2
√

6

3













.







−1
√

2

1
√

6

√

12

6

1
√

2

1
√

6

√

12

6

0
√

6

3
−
√

12

6






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23. Let A and B be two n×n matrices. A ∼ B (A is similar to B) means there exists an invertible
matrix, S such that A = S−1BS. Show that if A ∼ B, then B ∼ A. Show also that A ∼ A
and that if A ∼ B and B ∼ C, then A ∼ C.

If A = S−1BS, then SAS−1 = B and so if A ∼ B, then B ∼ A. It is obvious that A ∼ A
because you can let S = I. Say A ∼ B and B ∼ C. Then A = P−1BP and B = Q−1CQ.
Therefore,

A = P−1Q−1CQP = (QP )−1 C (QP )

and so A ∼ C.

24. In the context of Problem 23 show that if A ∼ B, then det (A) = det (B) .

det (A) = det
(

S−1BS
)

= det
(

S−1
)

det (B) det (S) = det (B) det
(

S−1S
)

= det (B).

25. Two n × n matrices, A and B, are similar if B = S−1AS for some invertible n × n matrix,
S. Show that if two matrices are similar, they have the same characteristic polynomials. The
characteristic polynomial of an n× n matrix, M is the polynomial, det (λI −M) .

Say M = S−1NS. Then

det (λI −M) = det
(

λI − S−1NS
)

= det
(

λS−1S − S−1NS
)

= det
(

S−1 (λI −N)S
)

= det (λI −N)

by the above problem.

26. Tell whether the statement is true or false.

(a) If A is a 3 × 3 matrix with a zero determinant, then one column must be a multiple of
some other column.

False. Consider





1 1 2
−1 5 4
0 3 3





(b) If any two columns of a square matrix are equal, then the determinant of the matrix
equals zero.

True

(c) For A and B two n× n matrices, det (A+B) = det (A) + det (B) .

False

(d) For A an n× n matrix, det (3A) = 3 det (A)

False

(e) If A−1 exists then det
(

A−1
)

= det (A)
−1

.

True

(f) If B is obtained by multiplying a single row of A by 4 then det (B) = 4 det (A) .

True

(g) For A an n× n matrix, det (−A) = (−1)n det (A) .
True

(h) If A is a real n× n matrix, then det
(

ATA
)

≥ 0.

True

(i) Cramer’s rule is useful for finding solutions to systems of linear equations in which there
is an infinite set of solutions.

False
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(j) If Ak = 0 for some positive integer, k, then det (A) = 0.

True

(k) If Ax = 0 for some x 6= 0, then det (A) = 0.

True

27. Use Cramer’s rule to find the solution to

x+ 2y = 1
2x− y = 2

Solution is: [x = 1, y = 0]

28. Use Cramer’s rule to find the solution to

x+ 2y + z = 1
2x− y − z = 2

x+ z = 1

Solution is: [x = 1, y = 0, z = 0] . For example,

y =

∣

∣

∣

∣

∣

∣

1 1 1
2 2 −1
1 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 2 1
2 −1 −1
1 0 1

∣

∣

∣

∣

∣

∣

= 0

29. Here is a matrix,




1 2 3
0 2 1
3 1 0





Determine whether the matrix has an inverse by finding whether the determinant is non zero.
If the determinant is nonzero, find the inverse using the formula for the inverse which involves
the cofactor matrix.

det





1 2 3
0 2 1
3 1 0



 = −13 and so it has an inverse. This inverse is

1

−13

















∣

∣

∣

∣

2 1
1 0

∣

∣

∣

∣

−
∣

∣

∣

∣

0 1
3 0

∣

∣

∣

∣

∣

∣

∣

∣

0 2
3 1

∣

∣

∣

∣

−
∣

∣

∣

∣

2 3
1 0

∣

∣

∣

∣

∣

∣

∣

∣

1 3
3 0

∣

∣

∣

∣

−
∣

∣

∣

∣

1 2
3 1

∣

∣

∣

∣

∣

∣

∣

∣

2 3
2 1

∣

∣

∣

∣

−
∣

∣

∣

∣

1 3
0 1

∣

∣

∣

∣

∣

∣

∣

∣

1 2
0 2

∣

∣

∣

∣

















T

= 1

−13





−1 3 −6
3 −9 5
−4 −1 2





T

=





1

13
− 3

13

4

13

− 3

13

9

13

1

13
6

13
− 5

13
− 2

13





30. Here is a matrix,




1 2 0
0 2 1
3 1 1




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Determine whether the matrix has an inverse by finding whether the determinant is non zero.
If the determinant is nonzero, find the inverse using the formula for the inverse which involves
the cofactor matrix.

det





1 2 0
0 2 1
3 1 1



 = 7 so it has an inverse. This inverse is 1

7





1 3 −6
−2 1 5
2 −1 2





T

=





1

7
− 2

7

2

7
3

7

1

7
− 1

7

− 6

7

5

7

2

7





31. Here is a matrix,




1 3 3
2 4 1
0 1 1





Determine whether the matrix has an inverse by finding whether the determinant is non zero.
If the determinant is nonzero, find the inverse using the formula for the inverse which involves
the cofactor matrix.

det





1 3 3
2 4 1
0 1 1



 = 3 so it has an inverse which is





1 0 −3
− 2

3

1

3

5

3
2

3
− 1

3
− 2

3





32. Here is a matrix,




1 2 3
0 2 1
2 6 7





Determine whether the matrix has an inverse by finding whether the determinant is non zero.
If the determinant is nonzero, find the inverse using the formula for the inverse which involves
the cofactor matrix.

33. Here is a matrix,




1 0 3
1 0 1
3 1 0





Determine whether the matrix has an inverse by finding whether the determinant is non zero.
If the determinant is nonzero, find the inverse using the formula for the inverse which involves
the cofactor matrix.

det





1 0 3
1 0 1
3 1 0



 = 2 and so it has an inverse. The inverse turns out to equal





− 1

2

3

2
0

3

2
− 9

2
1

1

2
− 1

2
0





34. Use the formula for the inverse in terms of the cofactor matrix to find if possible the inverses
of the matrices

(

1 1
1 2

)

,





1 2 3
0 2 1
4 1 1



 ,





1 2 1
2 3 0
0 1 2



 .

If the inverse does not exist, explain why.
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∣

∣

∣

∣

1 1
1 2

∣

∣

∣

∣

= 1,

∣

∣

∣

∣

∣

∣

1 2 3
0 2 1
4 1 1

∣

∣

∣

∣

∣

∣

= −15,

∣

∣

∣

∣

∣

∣

1 2 1
2 3 0
0 1 2

∣

∣

∣

∣

∣

∣

= 0. Thus the first two have inverses and the

third does not. The inverses of the first two are respectively

(

2 −1
−1 1

)

,





− 1

15
− 1

15

4

15

− 4

15

11

15

1

15
8

15
− 7

15
− 2

15



 .

35. Here is a matrix,




1 0 0
0 cos t − sin t
0 sin t cos t





Does there exist a value of t for which this matrix fails to have an inverse? Explain.

No. It has a nonzero determinant for all t.

36. Here is a matrix,




1 t t2

0 1 2t
t 0 2





Does there exist a value of t for which this matrix fails to have an inverse? Explain.

det





1 t t2

0 1 2t
t 0 2



 = t3 + 2 and so it has no inverse when t = − 3
√
2.

37. Here is a matrix,




et cosh t sinh t
et sinh t cosh t
et cosh t sinh t





Does there exist a value of t for which this matrix fails to have an inverse? Explain.

det





et cosh t sinh t
et sinh t cosh t
et cosh t sinh t



 = 0 and so this matrix fails to have a nonzero determinant at any

value of t.

38. Show that if det (A) 6= 0 for A an n× n matrix, it follows that if Ax = 0, then x = 0.

If det (A) 6= 0, then A−1 exists and so you could multiply on both sides on the left by A−1

and obtain that x = 0.

39. Suppose A,B are n×n matrices and that AB = I. Show that then BA = I. Hint: You might
do something like this: First explain why det (A) , det (B) are both nonzero. Then (AB)A = A
and then show BA (BA− I) = 0. From this use what is given to conclude A (BA− I) = 0.
Then use Problem 38.

You have 1 = det (A) det (B). Hence both A and B have inverses. Letting x be given,

A (BA− I)x = (AB)Ax−Ax = Ax−Ax = 0

and so it follows from the above problem that (BA− I)x = 0. Since x is arbitrary, it follows
that BA = I.

40. Use the formula for the inverse in terms of the cofactor matrix to find the inverse of the matrix,

A =





et 0 0
0 et cos t et sin t
0 et cos t− et sin t et cos t+ et sin t



 .
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det





et 0 0
0 et cos t et sin t
0 et cos t− et sin t et cos t+ et sin t



 = e3t. Hence the inverse is

e−3t





e2t 0 0
0 e2t cos t+ e2t sin t −

(

e2t cos t− e2t sin
)

t
0 −e2t sin t e2t cos (t)





T

=





e−t 0 0
0 e−t (cos t+ sin t) − (sin t) e−t

0 −e−t (cos t− sin t) (cos t) e−t





41. Find the inverse if it exists of the matrix,





et cos t sin t
et − sin t cos t
et − cos t − sin t



 .





et cos t sin t
et − sin t cos t
et − cos t − sin t





−1

=





1

2
e−t 0 1

2
e−t

1

2
cos t+ 1

2
sin t − sin t 1

2
sin t− 1

2
cos t

1

2
sin t− 1

2
cos t cos t − 1

2
cos t− 1

2
sin t





42. Here is a matrix,





et e−t cos t e−t sin t
et −e−t cos t− e−t sin t −e−t sin t+ e−t cos t
et 2e−t sin t −2e−t cos t





Does there exist a value of t for which this matrix fails to have an inverse? Explain.

det





et e−t cos t e−t sin t
et −e−t cos t− e−t sin t −e−t sin t+ e−t cos t
et 2e−t sin t −2e−t cos t



 = 5e−t 6= 0 and so this matrix is

always invertible.

43. Suppose A is an upper triangular matrix. Show that A−1 exists if and only if all elements of
the main diagonal are non zero. Is it true that A−1 will also be upper triangular? Explain. Is
everything the same for lower triangular matrices?

The given condition is what it takes for the determinant to be non zero. Recall that the
determinant of an upper triangular matrix is just the product of the entries on the main
diagonal.

44. If A,B, and C are each n × n matrices and ABC is invertible, why are each of A,B, and C
invertible.

This is obvious because det (ABC) = det (A) det (B) det (C) and if this product is nonzero,
then each determinant in the product is nonzero and so each of these matrices is invertible.

45. Let F (t) = det

(

a (t) b (t)
c (t) d (t)

)

. Verify

F ′ (t) = det

(

a′ (t) b′ (t)
c (t) d (t)

)

+ det

(

a (t) b (t)
c′ (t) d′ (t)

)

.

Now suppose

F (t) = det





a (t) b (t) c (t)
d (t) e (t) f (t)
g (t) h (t) i (t)



 .
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Use Laplace expansion and the first part to verify F ′ (t) =

det





a′ (t) b′ (t) c′ (t)
d (t) e (t) f (t)
g (t) h (t) i (t)



 + det





a (t) b (t) c (t)
d′ (t) e′ (t) f ′ (t)
g (t) h (t) i (t)





+det





a (t) b (t) c (t)
d (t) e (t) f (t)
g′ (t) h′ (t) i′ (t)



 .

Conjecture a general result valid for n × n matrices and explain why it will be true. Can a
similar thing be done with the columns?

Yes, a similar thing can be done with the columns because the determinant of the transpose
is the same as the determinant of the matrix.

46. Let Ly = y(n) + an−1 (x) y
(n−1) + · · · + a1 (x) y

′ + a0 (x) y where the ai are given continuous
functions defined on a closed interval, (a, b) and y is some function which has n derivatives so
it makes sense to write Ly. Suppose Lyk = 0 for k = 1, 2, · · · , n. The Wronskian of these
functions, yi is defined as

W (y1, · · · , yn) (x) ≡ det











y1 (x) · · · yn (x)
y′1 (x) · · · y′

n
(x)

...
...

y
(n−1)

1
(x) · · · y

(n−1)

n (x)











Show that for W (x) = W (y1, · · · , yn) (x) to save space,

W ′ (x) = det











y1 (x) · · · yn (x)
y′
1
(x) · · · y′

n
(x)

...
...

y
(n)

1
(x) · · · y

(n)

n (x)











.

Now use the differential equation, Ly = 0 which is satisfied by each of these functions, yi
and properties of determinants presented above to verify that W ′ + an−1 (x)W = 0. Give an
explicit solution of this linear differential equation, Abel’s formula, and use your answer to
verify that the Wronskian of these solutions to the equation, Ly = 0 either vanishes identically
on (a, b) or never. Hint: To solve the differential equation, let A′ (x) = an−1 (x) and multiply
both sides of the differential equation by eA(x) and then argue the left side is the derivative of
something.

The last formula above follows becauseW ′ (x) equals the sum of determinants of matrices which
have two equal rows except for the last one in the sum which is the displayed expression. Now
let

mi (x) = −
(

an−1 (x) y
(n−1)

i
+ · · ·+ a1 (x) y

′

i
+ a0 (x) yi

)

Since each yi is a solution to Ly = 0, it follows that y
(n)

i
(t) = mi (t). Now from the properties

of determinants, being linear in each row,

W ′ (x) = −an−1 (x) det











y1 (x) · · · yn (x)
y′
1
(x) · · · y′

n
(x)

...
...

y
(n−1)

1
(x) · · · y

(n−1)

n (x)











= −an−1 (x)W
′ (x)
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Now let A′ (x) = an−1 (x) . Then

d

dx

(

eA(x)W (x)
)

= 0

and so W (x) = Ce−A(x). Thus the Wronskian either vanishes for all x or for no x.

47. Find the following determinants.

(a) det





2 2 + 2i 3− 3i
2− 2i 5 1− 7i
3 + 3i 1 + 7i 16



 = 10

(b) det





10 2 + 6i 8− 6i
2− 6i 9 1− 7i
8 + 6i 1 + 7i 17



 = 250

B.9 Exercises 8.6

1. Let {u1, · · · ,un} be vectors in R
n. The parallelepiped determined by these vectors P (u1, · · · ,un)

is defined as

P (u1, · · · ,un) ≡
{

n
∑

k=1

tkuk : tk ∈ [0, 1] for all k

}

.

Now let A be an n× n matrix. Show that

{Ax : x ∈ P (u1, · · · ,un)}

is also a parallelepiped.

By definition, A (P (u1, · · · ,un)) = {
∑

n

k=1
tkAuk : tk ∈ [0, 1] for all k} which equals

P (Au1, · · · , Aun)

which is a parallelepiped.

2. In the context of Problem 1, draw P (e1, e2) where e1, e2 are the standard basis vectors for
R2. Thus e1 = (1, 0) , e2 = (0, 1) . Now suppose

E =

(

1 1
0 1

)

where E is the elementary matrix which takes the third row and adds to the first. Draw

{Ex : x ∈ P (e1, e2)} .

In other words, draw the result of doing E to the vectors in P (e1, e2). Next draw the results
of doing the other elementary matrices to P (e1, e2).

For E the given elementary matrix, the result is as follows.

P (e1, e2) E(P (e1, e2))
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It is called a shear. Note that it does not change the area.

In caseE =

(

1 0
0 α

)

, the given square P (e1, e2) becomes a rectangle. If α > 0, the square

is stretched by a factor of α in the y direction. If α < 0 the rectangle is reflected across the x

axis and in addition is stretched by a factor of |α| in the y direction. When E =

(

α 0
0 1

)

the result is similar only it features changes in the x direction. These elementary matrices

do change the area unless |α| = 1 when the area is unchanged. The permutation

(

0 1
1 0

)

simply switches e1 and e2 so the result appears to be a square just like the one you began
with.

3. In the context of Problem 1, either draw or describe the result of doing elementary matrices
to P (e1, e2, e3). Describe geometrically the conclusion of Corollary 8.5.12.

It is the same sort of thing. The elementary matrix either switches the ei about or it produces
a shear or a magnification in one direction.

4. Determine which matrices are in row reduced echelon form.

(a)

(

1 2 0
0 1 7

)

This one is not.

(b)





1 0 0 0
0 0 1 2
0 0 0 0





This one is.

(c)





1 1 0 0 0 5
0 0 1 2 0 4
0 0 0 0 1 3





This one is.

5. Row reduce the following matrices to obtain the row reduced echelon form. List the pivot
columns in the original matrix.

(a)





1 2 0 3
2 1 2 2
1 1 0 3



, row echelon form:





1 0 0 3
0 1 0 0
0 0 1 −2





(b)









1 2 3
2 1 −2
3 0 0
3 2 1









, row echelon form:









1 0 0
0 1 0
0 0 1
0 0 0









(c)





1 2 1 3
−3 2 1 0
3 2 1 1



, row echelon form:





1 0 0 0
0 1 1

2
0

0 0 0 1





6. Find the rank of the following matrices. If the rank is r, identify r columns in the origi-

nal matrix which have the property that every other column may be written as a linear
combination of these. Also find a basis for the row and column spaces of the matrices.

(a)









1 2 0
3 2 1
2 1 0
0 2 1









, row echelon form:









1 0 0
0 1 0
0 0 1
0 0 0









. The rank is 3.
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(b)









1 0 0
4 1 1
2 1 0
0 2 0









, row echelon form:









1 0 0
0 1 0
0 0 1
0 0 0









. The rank is 3

(c)









0 1 0 2 1 2 2
0 3 2 12 1 6 8
0 1 1 5 0 2 3
0 2 1 7 0 3 4









, row echelon form:









0 1 0 2 0 1 1
0 0 1 3 0 1 2
0 0 0 0 1 1 1
0 0 0 0 0 0 0









. The rank

is 3.

(d)









0 1 0 2 0 1 0
0 3 2 6 0 5 4
0 1 1 2 0 2 2
0 2 1 4 0 3 2









, row echelon form:









0 1 0 2 0 1 0
0 0 1 0 0 1 2
0 0 0 0 0 0 0
0 0 0 0 0 0 0









. The rank

is 2.

(e)









0 1 0 2 1 1 2
0 3 2 6 1 5 1
0 1 1 2 0 2 1
0 2 1 4 0 3 1









, row echelon form:









0 1 0 2 0 1 0
0 0 1 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1









. The rank

is 4.

7. Suppose A is an m×n matrix. Explain why the rank of A is always no larger than min (m,n) .

It is because you cannot have more than min (m,n) nonzero rows in the row reduced echelon
form. Recall that the number of pivot columns is the same as the number of nonzero rows
from the description of this row reduced echelon form.

8. LetH denote span

((

1
2

)

,

(

2
4

)

,

(

1
3

))

. Find the dimension ofH and determine a basis.

(

1 2 1
2 4 3

)

, row echelon form:

(

1 2 0
0 0 1

)

. A basis is

{(

1
2

)

,

(

1
3

)}

9. Let H denote span









1
2
0



 ,





2
4
0



 ,





1
3
1



 ,





0
1
1







 . Find the dimension of H and de-

termine a basis.




1 2 1 0
2 4 3 1
0 0 1 1



, row echelon form:





1 2 0 −1
0 0 1 1
0 0 0 0



 . A basis is











1
2
0



 ,





1
3
1











.

10. Let H denote span









1
2
0



 ,





1
4
0



 ,





1
3
1



 ,





0
1
1







 . Find the dimension of H and de-

termine a basis.
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



1 1 1 0
2 4 3 1
0 0 1 1



, row echelon form:





1 0 0 −1
0 1 0 0
0 0 1 1



 . A basis is











1
2
0



 ,





1
4
0



 ,





1
3
1











.

11. Let M =
{

u = (u1, u2, u3, u4) ∈ R4 : u3 = u1 = 0
}

. Is M a subspace? Explain.

Yes. This is a subspace. It is closed with respect to vector addition and scalar multiplication.

12. Let M =
{

u = (u1, u2, u3, u4) ∈ R4 : u3 ≥ u1

}

. Is M a subspace? Explain.

This is not a subspace. (0, 0, 1, 0) is in it. But (0, 0,−1, 0) is not.

13. Let w ∈ R
4 and let M =

{

u = (u1, u2, u3, u4) ∈ R
4 : w · u = 0

}

. Is M a subspace? Explain.

Yes, this is a subspace.

14. Let M =
{

u = (u1, u2, u3, u4) ∈ R4 : ui ≥ 0 for each i = 1, 2, 3, 4
}

. Is M a subspace? Explain.

This is clearly not a subspace. (1, 1, 1, 1) is in it. However, (−1) (1, 1, 1, 1) is not.

15. Let w,w
1
be given vectors in R4 and define

M =
{

u = (u1, u2, u3, u4) ∈ R
4 : w · u = 0 and w1 · u = 0

}

.

Is M a subspace? Explain.

Sure. This is a subspace. It is obviously closed with respect to vector addition and scalar
multiplication.

16. Let M =
{

u = (u1, u2, u3, u4) ∈ R4 : |u1| ≤ 4
}

. Is M a subspace? Explain.

This is not a subspace. (1, 1, 1, 1) is in it, but 20 (1, 1, 1, 1) is clearly not.

17. Let M =
{

u = (u1, u2, u3, u4) ∈ R4 : sin (u1) = 1
}

. Is M a subspace? Explain.

Not a subspace.

18. Study the definition of span. Explain what is meant by the span of a set of vectors. Include
pictures.

The span of vectors is a long flat thing. In three dimensions, it would be a plane which goes
through the origin.

19. Suppose {x1, · · · ,xk} is a set of vectors from Fn. Show that 0 is in span (x1, · · · ,xk) .
∑

k

i=1
0xk = 0.

20. Study the definition of linear independence. Explain in your own words what is meant by
linear independence and linear dependence. Illustrate with pictures.

21. Use Corollary 8.4.17 to prove the following theorem: If A,B are n×n matrices and if AB = I,
then BA = I and B = A−1. Hint: First note that if AB = I, then it must be the case that
A is onto. Explain why this requires span (columns of A) = Fn. Now explain why, using the
corollary that this requires A to be one to one. Next explain why A (BA− I) = 0 and why
the fact that A is one to one implies BA = I.

If AB = I, then B must be one to one. Otherwise there exists x 6= 0 such that Bx = 0. But
then you would have

x = Ix = ABx = A0 = 0
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In particular, the columns of B are linearly independent. Therefore, B is also onto. Also,

(BA− I)Bx = B (AB)x−Bx = 0

Since B is onto, it follows that BA − I maps every vector to 0 and so this matrix is 0. Thus
BA = I.

22. Here are three vectors. Determine whether they are linearly independent or linearly dependent.




1
2
0



 ,





2
0
1



 ,





3
0
0









1 2 3
2 0 0
0 1 0



, row echelon form:





1 0 0
0 1 0
0 0 1



 Thus the vectors are linearly independent.

23. Here are three vectors. Determine whether they are linearly independent or linearly dependent.




4
2
0



 ,





2
2
1



 ,





0
2
2









4 2 0
2 2 2
0 1 2



, row echelon form:





1 0 −1
0 1 2
0 0 0



 . These vectors are not linearly independent.

They are linearly dependent. In fact −1 times the first added to 2 times the second is the
third.

24. Here are three vectors. Determine whether they are linearly independent or linearly dependent.




1
2
3



 ,





4
5
1



 ,





3
1
0









1 4 3
2 5 1
3 1 0



, row echelon form:





1 0 0
0 1 0
0 0 1



 . These vectors are linearly independent.

25. Here are four vectors. Determine whether they span R3. Are these vectors linearly indepen-
dent?





1
2
3



 ,





4
3
3



 ,





3
1
0



 ,





2
4
6





These cannot be linearly independent because there are 4 of them. You can have at most
three. However, it might be that they span R3.




1 4 3 2
2 3 1 4
3 3 0 6



, row echelon form:





1 0 −1 2
0 1 1 0
0 0 0 0



 . The dimension of the span of these

vectors is 2 so they do not span R3.

26. Here are four vectors. Determine whether they span R3. Are these vectors linearly indepen-
dent?





1
2
3



 ,





4
3
3



 ,





3
2
0



 ,





2
4
6




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There are too many vectors to be linearly independent.




1 4 3 2
2 3 2 4
3 3 0 6



, row echelon form:





1 0 0 2
0 1 0 0
0 0 1 0



 . The dimension of the span of these

vectors is 3 and so these vectors do span R3.

27. Determine whether the following vectors are a basis for R3. If they are, explain why they are
and if they are not, give a reason and tell whether they span R3.





1
0
3



 ,





4
3
3



 ,





1
2
0



 ,





2
4
0





These vectors are not linearly independent and so they are not a basis. The remaining question
is whether they span.




1 4 1 2
0 3 2 4
3 3 0 0



, row echelon form:





1 0 0 0
0 1 0 0
0 0 1 2



 . The dimension of the span of these

vectors is 3 and so they do span R3.

28. Determine whether the following vectors are a basis for R3. If they are, explain why they are
and if they are not, give a reason and tell whether they span R3.





1
0
3



 ,





0
1
0



 ,





1
2
0





They will be a basis if and only if they are linearly independent.




1 0 1
0 1 2
3 0 0



, row echelon form:





1 0 0
0 1 0
0 0 1



 . The vectors are linearly independent and so

they are a basis for R3.

29. Determine whether the following vectors are a basis for R3. If they are, explain why they are
and if they are not, give a reason and tell whether they span R

3.





1
0
3



 ,





0
1
0



 ,





1
2
0



 ,





0
0
0





These vectors cannot be a basis because there are too many of them. Also one is 0. However,
from the above problem, the first three are linearly independent and so they do span R

3.

30. Determine whether the following vectors are a basis for R3. If they are, explain why they are
and if they are not, give a reason and tell whether they span R3.





1
0
3



 ,





0
1
0



 ,





1
1
3



 ,





0
0
0





They are clearly linearly dependent because on of them is the zero vector. There are also too
many of them for them to be linearly independent. The only question is whether they span
R3. However, the third is the sum of the first two and so the dimension of the span of the
vectors is only 2. Hence they do not span R3 either.
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31. Consider the vectors of the form










2t+ 3s
s− t
t+ s



 : s, t ∈ R







.

Is this set of vectors a subspace of R3? If so, explain why, give a basis for the subspace and
find its dimension.

Yes it is. It is the span of the vectors





2
−1
1



 ,





3
1
1



 . Since these two vectors are a linearly

independent set, the given subspace has dimension 2.

32. Consider the vectors of the form






















2t+ 3s+ u
s− t
t+ s
u









: s, t, u ∈ R















.

Is this set of vectors a subspace of R4? If so, explain why, give a basis for the subspace and
find its dimension.

This is the span of the vectors which form the columns of the following matrix.








3 2 1
1 −1 0
1 1 0
0 0 1









, row echelon form:









1 0 0
0 1 0
0 0 1
0 0 0









. Thus the vectors are linearly independent.

Hence they form a basis and the subspace has dimension 3.

33. Consider the vectors of the form






















2t+ u
t+ 3u

t+ s+ v
u









: s, t, u, v ∈ R















.

Is this set of vectors a subspace of R4? If so, explain why, give a basis for the subspace and
find its dimension.

It is a subspace and it equals the span of the vectors which form the columns of the following
matrix.








0 2 1 0
0 1 3 0
1 1 0 1
0 0 1 0









, row echelon form:









1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 0









. It follows that the dimension of this

subspace equals 3. A basis is






















0
0
1
0









,









2
1
1
0









,









1
3
0
1























.

34. If you have 5 vectors in F5 and the vectors are linearly independent, can it always be concluded
they span F5? Explain.

Yes. If not, there would exist a vector not in the span. But then you could add in this vector
and obtain a linearly independent set of vectors with more vectors than a basis.
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35. If you have 6 vectors in F5, is it possible they are linearly independent? Explain.

No. They can’t be.

36. Suppose A is an m × n matrix and {w1, · · · ,wk} is a linearly independent set of vectors in
A (Fn) ⊆ Fm. Now suppose A (zi) = wi. Show {z1, · · · , zk} is also independent.

Say
∑

k

i=1
cizi = 0. Then you can do A to it.

k
∑

i=1

ciAzi =

k
∑

i=1

ciwi = 0

and so, by linear independence of the wi, it follows that each ci = 0.

37. Suppose V,W are subspaces of Fn. Show V ∩W defined to be all vectors which are in both V
and W is a subspace also.

This is obvious. If x,y ∈ V ∩W, then for scalars α, β, the linear combination αx + βy must
be in both V and W since they are both subspaces.

38. Suppose V and W both have dimension equal to 7 and they are subspaces of F10. What are
the possibilities for the dimension of V ∩W? Hint: Remember that a linear independent set
can be extended to form a basis.

See the next problem.

39. Suppose V has dimension p and W has dimension q and they are each contained in a subspace,
U which has dimension equal to n where n > max (p, q) . What are the possibilities for the
dimension of V ∩W? Hint: Remember that a linear independent set can be extended to form
a basis.

Let {x1, · · · , xk} be a basis for V ∩W. Then there is a basis for V and W which are respectively

{x1, · · · , xk, yk+1, · · · , yp} , {x1, · · · , xk, zk+1, · · · , zq}

It follows that you must have k + p− k + q − k ≤ n and so you must have

p+ q − n ≤ k

40. If b 6= 0, can the solution set of Ax = b be a plane through the origin? Explain.

No. It can’t. It does not contain 0.

41. Suppose a system of equations has fewer equations than variables and you have found a solution
to this system of equations. Is it possible that your solution is the only one? Explain.

No. There must then be infinitely many solutions. If the system is Ax = b, then there are
infinitely many solutions to Ax = 0 and so the solutions to Ax = b are a particular solution
to Ax = b added to the solutions to Ax = 0 of which there are infinitely many.

42. Suppose a system of linear equations has a 2 × 4 augmented matrix and the last column is a
pivot column. Could the system of linear equations be consistent? Explain.

No. This would lead to 0 = 1.

43. Suppose the coefficient matrix of a system of n equations with n variables has the property
that every column is a pivot column. Does it follow that the system of equations must have a
solution? If so, must the solution be unique? Explain.

Yes. It has a unique solution.
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44. Suppose there is a unique solution to a system of linear equations. What must be true of the
pivot columns in the augmented matrix.

The last one must not be a pivot column and the ones to the left must each be pivot columns.

45. State whether each of the following sets of data are possible for the matrix equation Ax = b.
If possible, describe the solution set. That is, tell whether there exists a unique solution no
solution or infinitely many solutions.

(a) A is a 5 × 6 matrix, rank (A) = 4 and rank (A|b) = 4. Hint: This says b is in the span
of four of the columns. Thus the columns are not independent.

Infinite solution set.

(b) A is a 3× 4 matrix, rank (A) = 3 and rank (A|b) = 2.

This surely can’t happen. If you add in another column, the rank does not get smaller.

(c) A is a 4 × 2 matrix, rank (A) = 4 and rank (A|b) = 4. Hint: This says b is in the span
of the columns and the columns must be independent.

You can’t have the rank equal 4 if you only have two columns.

(d) A is a 5 × 5 matrix, rank (A) = 4 and rank (A|b) = 5. Hint: This says b is not in the
span of the columns.

In this case, there is no solution to the system of equations represented by the augmented
matrix.

(e) A is a 4× 2 matrix, rank (A) = 2 and rank (A|b) = 2.

In this case, there is a unique solution since the columns of A are independent.

46. Suppose A is an m × n matrix in which m ≤ n. Suppose also that the rank of A equals m.
Show that A maps Fn onto Fm. Hint: The vectors e1, · · · , em occur as columns in the row
reduced echelon form for A.

This says that the columns of A have a subset of m vectors which are linearly independent.
Therefore, this set of vectors is a basis for Fm. It follows that the span of the columns is all of
Fm. Thus A is onto.

47. Suppose A is an m × n matrix in which m ≥ n. Suppose also that the rank of A equals n.
Show that A is one to one. Hint: If not, there exists a vector, x such that Ax = 0, and this
implies at least one column of A is a linear combination of the others. Show this would require
the column rank to be less than n.

The columns are independent. Therefore, A is one to one.

48. Explain why an n× n matrix, A is both one to one and onto if and only if its rank is n.

The rank is n is the same as saying the columns are independent which is the same as saying
A is one to one which is the same as saying the columns are a basis. Thus the span of the
columns of A is all of Fn and so A is onto. If A is onto, then the columns must be linearly
independent since otherwise the span of these columns would have dimension less than n and
so the dimension of Fn would be less than n.

49. Suppose A is an m× n matrix and B is an n× p matrix. Show that

dim (ker (AB)) ≤ dim (ker (A)) + dim (ker (B)) .

Hint: Consider the subspace, B (Fp)∩ker (A) and suppose a basis for this subspace is {w1, · · · ,wk} .
Now suppose {u1, · · · ,ur} is a basis for ker (B) . Let {z1, · · · , zk} be such that Bzi = wi and
argue that

ker (AB) ⊆ span (u1, · · · ,ur, z1, · · · , zk) .
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Here is how you do this. Suppose ABx = 0. Then Bx ∈ ker (A)∩B (Fp) and soBx =
∑

k

i=1
Bzi

showing that

x−
k
∑

i=1

zi ∈ ker (B) .

Consider B (Fp) ∩ ker (A) and let a basis be {w1, · · · ,wk} . Then each wi is of the form
Bzi = wi. Therefore, {z1, · · · , zk} is linearly independent and ABzi = 0. Now let {u1, · · · ,ur}
be a basis for ker (B) . If ABx = 0, then Bx ∈ ker (A)∩B (Fp) and so Bx =

∑

k

i=1
ciBzi which

implies

x−
k
∑

i=1

cizi ∈ ker (B)

and so it is of the form

x−
k

∑

i=1

cizi =

r
∑

j=1

djuj

It follows that if ABx = 0 so that x ∈ ker (AB) , then

x ∈ span (z1, · · · , zk,u1, · · · ,ur) .

Therefore,

dim (ker (AB)) ≤ k + r = dim (B (Fp) ∩ ker (A)) + dim (ker (B))

≤ dim (ker (A)) + dim (ker (B))

50. Explain why Ax = 0 always has a solution even when A−1 does not exist.

Just let x = 0. Then this solves the equation.

(a) What can you conclude about A if the solution is unique?

You can conclude that the columns of A are linearly independent and so A−1 exists.

(b) What can you conclude about A if the solution is not unique?

You can conclude that the columns of A are dependent and so A−1 does not exist. Thus
A is not one to one and A is not onto.

51. Suppose det (A− λI) = 0. Show using Theorem 9.2.9 there exists x 6= 0 such that (A− λI)x = 0.

If det (A− λI) = 0 then (A− λI)
−1

does not exist and so the columns are not independent
which means that for some x 6= 0, (A− λI)x = 0.

52. Let A be an n × n matrix and let x be a nonzero vector such that Ax = λx for some scalar
λ. When this occurs, the vector x is called an eigenvector and the scalar, λ is called an
eigenvalue. It turns out that not every number is an eigenvalue. Only certain ones are.
Why? Hint: Show that if Ax = λx, then (A− λI)x = 0. Explain why this shows that
(A− λI) is not one to one and not onto. Now use Theorem 9.2.9 to argue det (A− λI) = 0.
What sort of equation is this? How many solutions does it have?

If A is n× n, then the equation is a polynomial equation of degree n.

53. Let m < n and let A be an m × n matrix. Show that A is not one to one. Hint: Consider
the n× n matrix, A1 which is of the form

A1 ≡
(

A
0

)
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where the 0 denotes an (n−m)× n matrix of zeros. Thus detA1 = 0 and so A1 is not one to
one. Now observe that A1x is the vector,

A1x =

(

Ax
0

)

which equals zero if and only if Ax = 0. Do this using the Fredholm alternative.

Since A1 is not one to one, it follows there exists x 6= 0 such that A1x = 0. Hence Ax = 0

although x 6= 0 so it follows that A is not one to one. From another point of view, if A were
one to one, then ker (A)⊥ = Rn and so by the Fredholm alternative, AT would be onto Rn.
However, AT has only m columns so this cannot take place.

54. Let A be an m× n real matrix and let b ∈ R
m. Show there exists a solution, x to the system

ATAx = AT

b

Next show that if x,x
1
are two solutions, then Ax = Ax1. Hint: First show that

(

ATA
)

T

=

ATA. Next show if x ∈ ker
(

ATA
)

, then Ax = 0. Finally apply the Fredholm alternative. This
will give existence of a solution.

That
(

ATA
)

T

= ATA follows from the properties of the transpose. Therefore,

(

ker
(

(

ATA
)

T

))

⊥

=
(

ker
(

ATA
))

⊥

Suppose ATAx = 0. Then
(

ATAx,x
)

= (Ax,Ax) and so Ax = 0. Therefore,

(

AT

b,x
)

= (b,Ax) = (b,0) = 0

It follows that AT
b ∈

(

ker
(

(

ATA
)

T

))

⊥

and so there exists a solution x to the equation

ATAx = AT

b

by the Fredholm alternative.

55. Show that in the context of Problem 54 that if x is the solution there, then |b−Ax| ≤ |b−Ay|
for every y. Thus Ax is the point of A (Rn) which is closest to b of every point in A (Rn).

|b−Ay|2 = |b−Ax+Ax−Ay|2

= |b−Ax|2 + |Ax−Ay|2 + 2 (b−Ax,A (x− y))

= |b−Ax|2 + |Ax−Ay|2 + 2
(

AT

b−ATAx, (x− y)
)

= |b−Ax|2 + |Ax−Ay|2

and so, Ax is closest to b out of all vectors Ay.

56. Let A be an n× n matrix and consider the matrices
{

I, A,A2, · · · , An
2

}

. Explain why there

exist scalars, ci not all zero such that

n
2

∑

i=1

ciA
i = 0.

Then argue there exists a polynomial, p (λ) of the form

λm + dm−1λ
m−1 + · · ·+ d1λ+ d0
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such that p (A) = 0 and if q (λ) is another polynomial such that q (A) = 0, then q (λ) is of the
form p (λ) l (λ) for some polynomial, l (λ) . This extra special polynomial, p (λ) is called the

minimal polynomial. Hint: You might consider an n× n matrix as a vector in Fn
2

.

The dimension of Fn
2

is n2. Therefore, there exist scalars ck such that

n
2

∑

k=0

ckA
k = 0

Let p (λ) be the monic polynomial having smallest degree such that p (A) = 0. If q (A) = 0
then from the Euclidean algorithm,

q (λ) = p (λ) l (λ) + r (λ)

where the degree of r (λ) is less than the degree of p (λ) or else r (λ) equals 0. However, if it
is not zero, you could plug in A and obtain

0 = q (A) = 0 + r (A)

and this would contradict the definition of p (λ) as being the polynomial having smallest degree
which sends A to 0. Hence q (λ) = p (λ) l (λ) .

B.10 Exercises 9.3

1. Study the definition of a linear transformation. State it from memory.

2. Show the map T : Rn → Rm defined by T (x) = Ax where A is an m× n matrix and x is an
m× 1 column vector is a linear transformation.

This is obvious from the properties of matrix multiplication.

3. Find the matrix for the linear transformation which rotates every vector in R
2 through an

angle of π/3.
(

cos
(

π

3

)

− sin
(

π

3

)

sin
(

π

3

)

cos
(

π

3

)

)

=

(

1

2
− 1

2

√
3

1

2

√
3 1

2

)

4. Find the matrix for the linear transformation which rotates every vector in R2 through an
angle of π/4.
(

cos
(

π

4

)

− sin
(

π

4

)

sin
(

π

4

)

cos
(

π

4

)

)

=

(

1

2

√
2 − 1

2

√
2

1

2

√
2 1

2

√
2

)

5. Find the matrix for the linear transformation which rotates every vector in R2 through an
angle of −π/3.
(

cos
(

−π

3

)

− sin
(

−π

3

)

sin
(

−π

3

)

cos
(

−π

3

)

)

=

(

1

2

1

2

√
3

− 1

2

√
3 1

2

)

6. Find the matrix for the linear transformation which rotates every vector in R2 through an
angle of 2π/3.
(

cos
(

2π

3

)

− sin
(

2π

3

)

sin
(

2π

3

)

cos
(

2π

3

)

)

=

(

− 1

2
− 1

2

√
3

1

2

√
3 − 1

2

)

7. Find the matrix for the linear transformation which rotates every vector in R2 through an
angle of π/12. Hint: Note that π/12 = π/3− π/4.
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(

cos
(

π

3

)

− sin
(

π

3

)

sin
(

π

3

)

cos
(

π

3

)

)(

cos
(

−π

4

)

− sin
(

−π

4

)

sin
(

−π

4

)

cos
(

−π

4

)

)

=

(

1

4

√
2
√
3 + 1

4

√
2 1

4

√
2− 1

4

√
2
√
3

1

4

√
2
√
3− 1

4

√
2 1

4

√
2
√
3 + 1

4

√
2

)

8. Find the matrix for the linear transformation which rotates every vector in R2 through an
angle of 2π/3 and then reflects across the x axis.
(

1 0
0 −1

)(

cos
(

2π

3

)

− sin
(

2π

3

)

sin
(

2π

3

)

cos
(

2π

3

)

)

=

(

− 1

2
− 1

2

√
3

− 1

2

√
3 1

2

)

9. Find the matrix for the linear transformation which rotates every vector in R2 through an
angle of π/3 and then reflects across the x axis.
(

1 0
0 −1

)(

cos
(

π

3

)

− sin
(

π

3

)

sin
(

π

3

)

cos
(

π

3

)

)

=

(

1

2
− 1

2

√
3

− 1

2

√
3 − 1

2

)

10. Find the matrix for the linear transformation which rotates every vector in R2 through an
angle of π/4 and then reflects across the x axis.
(

1 0
0 −1

)(

cos
(

π

4

)

− sin
(

π

4

)

sin
(

π

4

)

cos
(

π

4

)

)

=

(

1

2

√
2 − 1

2

√
2

− 1

2

√
2 − 1

2

√
2

)

11. Find the matrix for the linear transformation which rotates every vector in R
2 through an

angle of π/6 and then reflects across the x axis followed by a reflection across the y axis.
(

−1 0
0 1

)(

cos
(

π

6

)

− sin
(

π

6

)

sin
(

π

6

)

cos
(

π

6

)

)

=

(

− 1

2

√
3 1

2
1

2

1

2

√
3

)

12. Find the matrix for the linear transformation which reflects every vector in R2 across the x
axis and then rotates every vector through an angle of π/4.
(

cos
(

π

4

)

− sin
(

π

4

)

sin
(

π

4

)

cos
(

π

4

)

)(

1 0
0 −1

)

=

(

1

2

√
2 1

2

√
2

1

2

√
2 − 1

2

√
2

)

13. Find the matrix for the linear transformation which reflects every vector in R2 across the y
axis and then rotates every vector through an angle of π/4.
(

cos
(

π

4

)

− sin
(

π

4

)

sin
(

π

4

)

cos
(

π

4

)

)(

−1 0
0 1

)

=

(

− 1

2

√
2 − 1

2

√
2

− 1

2

√
2 1

2

√
2

)

14. Find the matrix for the linear transformation which reflects every vector in R2 across the x
axis and then rotates every vector through an angle of π/6.
(

cos
(

π

6

)

− sin
(

π

6

)

sin
(

π

6

)

cos
(

π

6

)

)(

1 0
0 −1

)

=

(

1

2

√
3 1

2
1

2
− 1

2

√
3

)

15. Find the matrix for the linear transformation which reflects every vector in R2 across the y
axis and then rotates every vector through an angle of π/6.
(

cos
(

π

6

)

− sin
(

π

6

)

sin
(

π

6

)

cos
(

π

6

)

)(

−1 0
0 1

)

=

(

− 1

2

√
3 − 1

2

− 1

2

1

2

√
3

)

16. Find the matrix for the linear transformation which rotates every vector in R
2 through an

angle of 5π/12. Hint: Note that 5π/12 = 2π/3− π/4.

(

cos
(

2π

3

)

− sin
(

2π

3

)

sin
(

2π

3

)

cos
(

2π

3

)

)(

cos
(

−π

4

)

− sin
(

−π

4

)

sin
(

−π

4

)

cos
(

−π

4

)

)

=
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(

1

4

√
2
√
3− 1

4

√
2 − 1

4

√
2
√
3− 1

4

√
2

1

4

√
2
√
3 + 1

4

√
2 1

4

√
2
√
3− 1

4

√
2

)

Note that it doesn’t matter about the order in this case.

17. Find the matrix of the linear transformation which rotates every vector in R3 counter clockwise
about the z axis when viewed from the positive z axis through an angle of 30◦ and then reflects
through the xy plane.

�x
-y

6
z





1 0 0
0 1 0
0 0 −1









cos
(

π

6

)

− sin
(

π

6

)

0
sin

(

π

6

)

cos
(

π

6

)

0
0 0 1



 =





1

2

√
3 − 1

2
0

1

2

1

2

√
3 0

0 0 −1





18. Find the matrix for proj
u
(v) where u = (1,−2, 3)T .

Recall that proju (v) = (v,u)

|u|
2 u and so the desired matrix has ith column equal to proju (ei) .

Therefore, the matrix desired is 1

14





1 −2 3
−2 4 −6
3 −6 9





19. Find the matrix for proju (v) where u = (1, 5, 3)
T

.

As in the above, the matrix is 1

35





1 5 3
5 25 15
3 15 9





20. Find the matrix for proju (v) where u = (1, 0, 3)
T

.

1

10





1 0 3
0 0 0
3 0 9





21. Show that the function Tu defined by Tu (v) ≡ v − proj
u
(v) is also a linear transformation.

Tu (av+bw) = av+bw−(av+bw · u)
|u|2

u

= av − a
(v · u)
|u|2

u+ bw−b (w · u)
|u|2

u

= aTu (v) + bTu (w)

22. Show that (v − proju (v) ,u) = 0 and conclude every vector in Rn can be written as the sum
of two vectors, one which is perpendicular and one which is parallel to the given vector.

(v − proj
u
(v) ,u) = (v,u)−

(

(v·u)

|u|
2 u,u

)

= (v,u)− (v,u) = 0.

Therefore, v = v− proj
u
(v) + proj

u
(v) . The first is perpendicular to u and the second is a

multiple of u so it is parallel to u.

23. Here are some descriptions of functions mapping Rn to Rn.

(a) T multiplies the jth component of x by a nonzero number b.
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(b) T replaces the ith component of x with b times the jth component added to the ith

component.

(c) T switches two components.

Show these functions are linear and describe their matrices.

Each of these is an elementary matrix. The first is the elementary matrix which multiplies the
jth diagonal entry of the identity matrix by b. The second is the elementary matrix which takes
b times the jth row and adds to the ith row and the third is just the elementary matrix which
switches the ith and the jth rows where the two components are in the ith and jth positions.

24. In Problem 23, sketch the effects of the linear transformations on the unit square in R2. Give
a geometric description of an arbitrary invertible matrix in terms of products of matrices of
these special matrices in Problem 23.

This picture was done earlier. Now if A is an arbitrary n× n matrix, then a product of these
elementary matrices E1 · · ·Ep has the property that E1 · · ·EpA = I. Hence A is the product
of the inverse elementary matrices in the opposite order. Each of these is of the form in the
above problem.

25. Let u =(a, b) be a unit vector in R2. Find the matrix which reflects all vectors across this
vector.

1
� �u

Hint: You might want to notice that (a, b) = (cos θ, sin θ) for some θ. First rotate through −θ.
Next reflect through the x axis which is easy. Finally rotate through θ.

(

cos (θ) − sin (θ)
sin (θ) cos (θ)

)(

1 0
0 −1

)(

cos (−θ) − sin (−θ)
sin (−θ) cos (−θ)

)

=

(

cos2 θ − sin2 θ 2 cos θ sin θ
2 cos θ sin θ sin2 θ − cos2 θ

)

Now to write in terms of (a, b) , note that a/
√
a2 + b2 = cos θ, b/

√
a2 + b2 = sin θ. Now plug

this in to the above. The result is
(

a
2
−b

2

a
2+b

2 2 ab

a
2+b

2

2 ab

a
2+b

2

b
2
−a

2

a
2+b

2

)

=
1

a2 + b2

(

a2 − b2 2ab
2ab b2 − a2

)

Since this is a unit vector, a2 + b2 = 1 and so you get

(

a2 − b2 2ab
2ab b2 − a2

)

26. Let u be a unit vector. Show the linear transformation of the matrix I − 2uuT preserves all
distances and satisfies

(

I − 2uuT

)

T
(

I − 2uuT

)

= I.

This matrix is called a Householder reflection. More generally, any matrix Q which satisfies
QTQ = QQT is called an orthogonal matrix. Show the linear transformation determined by
an orthogonal matrix always preserves the length of a vector in Rn. Hint: First either recall,
depending on whether you have done Problem 51 on Page 97, or show that for any matrix A,

〈Ax,y〉 =
〈

x,AT

y
〉
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(

I − 2uuT

)

T
(

I − 2uuT

)

=
(

I − 2uuT

) (

I − 2uuT

)

= I − 2uuT − 2uuT + 4u

=1

︷︸︸︷

u
T

uu
T = I

Now, why does this matrix preserve distance? For short, call it Q and note that QTQ = I.
Then

|x|2 =
(

QTQx,x
)

= (Qx,Qx) = |Qx|2

and so Q preserves distances.

27. Suppose |x| = |y| for x,y ∈ Rn. The problem is to find an orthogonal transformation Q, (see
Problem 26) which has the property that Qx = y and Qy = x. Show

Q ≡ I − 2
x− y

|x− y|2
(x− y)

T

does what is desired.

From the above problem this preserves distances and QT = Q. Now do it to x.

Q (x− y) = x− y − 2
x− y

|x− y|2
(x− y,x− y) = y − x

Q (x+ y) = x+ y − 2
x− y

|x− y|2
(x− y)

T

(x+ y)

= x+ y − 2
x− y

|x− y|2
(

|x|2 − |y|2
)

= x+ y

and so

Qx−Qy = y − x

Qx+Qy = x+ y

Hence, adding these yields Qx = y and then subtracting them gives Qy = x.

28. Let a be a fixed vector. The function Ta defined by Tav = a+ v has the effect of translating
all vectors by adding a. Show this is not a linear transformation. Explain why it is not possible
to realize Ta in R

3 by multiplying by a 3× 3 matrix.

Linear transformations take 0 to 0. Also Ta (u+ v) 6= Tau+ Tav.

29. In spite of Problem 28 we can represent both translations and rotations by matrix multiplica-
tion at the expense of using higher dimensions. This is done by the homogeneous coordinates.
I will illustrate in R3 where most interest in this is found. For each vector v = (v1, v2, v3)

T

,

consider the vector in R4 (v1, v2, v3, 1)
T

. What happens when you do









1 0 0 a1
0 1 0 a2
0 0 1 a3
0 0 0 1

















v1
v2
v3
1









?

Describe how to consider both rotations and translations all at once by forming appropriate
4× 4 matrices.

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



54 Exercises

That product above is of the form








a1 + v1
a2 + v2
a3 + v3

1









If you just discard the one at the bottom, you have found a+ v. Then to do both rotations
and translations, you would look at matrices of the form

(

R 0

0 1

)

where R is a rotation matrix and for translation by a, you use
(

I a

0 1

)

To obtain a rotation followed by a translation by a, you would just multiply these two matrices.
to get

(

I a

0 1

)(

R 0

0 1

)

=

(

R a

0 1

)

If you did this to the vector

(

x

1

)

, you would get

(

Rx+ a

1

)

. Now discard the 1 and you

have what you want.

30. Write the solution set of the following system as the span of vectors and find a basis for the
solution space of the following system.





1 −1 2
1 −2 1
3 −4 5









x
y
z



 =





0
0
0



 .

Solution is:





−3t̂
−t̂
t̂



 , t̂3 ∈ R . A basis for the solution space is





−3
−1
1





31. Using Problem 30 find the general solution to the following linear system.




1 −1 2
1 −2 1
3 −4 5









x
y
z



 =





1
2
4



 .

Note that this has the same matrix as the above problem.

Solution is:





−3t̂3
−t̂3
t̂3



+





0
−1
0



 , t̂3 ∈ R

32. Write the solution set of the following system as the span of vectors and find a basis for the
solution space of the following system.





0 −1 2
1 −2 1
1 −4 5









x
y
z



 =





0
0
0



 .

Solution is:





3t̂
2t̂
t̂



 , A basis is





3
2
1




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33. Using Problem 32 find the general solution to the following linear system.





0 −1 2
1 −2 1
1 −4 5









x
y
z



 =





1
−1
1



 .

Solution is:





3t̂
2t̂
t̂



+





−3
−1
0



 , t̂ ∈ R

34. Write the solution set of the following system as the span of vectors and find a basis for the
solution space of the following system.





1 −1 2
1 −2 0
3 −4 4









x
y
z



 =





0
0
0



 .

Solution is:





−4t̂
−2t̂
t̂



. A basis is





−4
−2
1





35. Using Problem 34 find the general solution to the following linear system.





1 −1 2
1 −2 0
3 −4 4









x
y
z



 =





1
2
4



 .





1 −1 2
1 −2 0
3 −4 4









x
y
z



 =





1
2
4



, Solution is:





−4t̂
−2t̂
t̂



+





0
−1
0



 , t̂ ∈ R.

36. Write the solution set of the following system as the span of vectors and find a basis for the
solution space of the following system.





0 −1 2
1 0 1
1 −2 5









x
y
z



 =





0
0
0



 .

Solution is:





−t̂
2t̂
t̂



 , t̂ ∈ R.

37. Using Problem 36 find the general solution to the following linear system.





0 −1 2
1 0 1
1 −2 5









x
y
z



 =





1
−1
1



 .

Solution is:





−t̂
2t̂
t̂



+





−1
−1
0





Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



56 Exercises

38. Write the solution set of the following system as the span of vectors and find a basis for the
solution space of the following system.









1 0 1 1
1 −1 1 0
3 −1 3 2
3 3 0 3

















x
y
z
w









=









0
0
0
0









.

Solution is:









0
−t̂
−t̂
t̂









, t̂ ∈ R

39. Using Problem 38 find the general solution to the following linear system.









1 0 1 1
1 −1 1 0
3 −1 3 2
3 3 0 3

















x
y
z
w









=









1
2
4
3









.

Solution is:









0
−t̂
−t̂
t̂









+









2
−1
−1
0









40. Write the solution set of the following system as the span of vectors and find a basis for the
solution space of the following system.









1 1 0 1
2 1 1 2
1 0 1 1
0 0 0 0

















x
y
z
w









=









0
0
0
0









.









1 1 0 1
2 1 1 2
1 0 1 1
0 0 0 0

















x
y
z
w









=









0
0
0
0









, Solution is:









−s− t
s
s
t









, s, t ∈ R. A basis is























−1
1
1
0









,









−1
0
0
1























41. Using Problem 40 find the general solution to the following linear system.









1 1 0 1
2 1 1 2
1 0 1 1
0 −1 1 1

















x
y
z
w









=









2
−1
−3
0









.

Solution is:









−t̂
t̂
t̂
0









+









−8
5
0
5








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42. Give an example of a 3×2 matrix with the property that the linear transformation determined
by this matrix is one to one but not onto.




1 0
0 1
0 0





43. Write the solution set of the following system as the span of vectors and find a basis for the
solution space of the following system.









1 1 0 1
1 −1 1 0
3 1 1 2
3 3 0 3

















x
y
z
w









=









0
0
0
0









.

Solution is:









− 1

2
s− 1

2
t

1

2
s− 1

2
t

s
t









for s, t ∈ R. A basis is























−1
1
2
0









,









−1
1
0
1























44. Using Problem 43 find the general solution to the following linear system.








1 1 0 1
1 −1 1 0
3 1 1 2
3 3 0 3

















x
y
z
w









=









1
2
4
3









.

Solution is:









3

2

− 1

2

0
0









+









− 1

2
s− 1

2
t

1

2
s− 1

2
t

s
t









45. Write the solution set of the following system as the span of vectors and find a basis for the
solution space of the following system.









1 1 0 1
2 1 1 2
1 0 1 1
0 −1 1 1

















x
y
z
w









=









0
0
0
0









.

Solution is:









−t̂
t̂
t̂
0









, a basis is









1
1
1
0









.

46. Using Problem 45 find the general solution to the following linear system.








1 1 0 1
2 1 1 2
1 0 1 1
0 −1 1 1

















x
y
z
w









=









2
−1
−3
1









.
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Solution is:









−t̂
t̂
t̂
0









+









−9
5
0
6









, t ∈ R.

47. Find ker (A) for

A =









1 2 3 2 1
0 2 1 1 2
1 4 4 3 3
0 2 1 1 2









.

Recall ker (A) is just the set of solutions to Ax = 0. It is the solution space to the system
Ax = 0.

Solution is:













w − v − 2u
− 1

2
u− 1

2
v − w

u
v
w













, u, v, w ∈ F. A basis is



































−2
−1/2
1
0
0













,













−1
−1/2
0
1
0













,













1
−1
0
0
1



































48. Using Problem 47, find the general solution to the following linear system.









1 2 3 2 1
0 2 1 1 2
1 4 4 3 3
0 2 1 1 2





















x1

x2

x3

x4

x5













=









11
7
18
7









The augmented matrix is








1 2 3 2 1 11
0 2 1 1 2 7
1 4 4 3 3 18
0 2 1 1 2 7









, row echelon form:









1 0 2 1 −1 4
0 1 1

2

1

2
1 7

2

0 0 0 0 0 0
0 0 0 0 0 0









. It follows that a

particular solution is













4
7/2
0
0
0













. Then the general solution is

s













−2
−1/2
1
0
0













+ t













−1
−1/2
0
1
0













+ w













1
−1
0
0
1













+













4
7/2
0
0
0













49. Find the general solution to the following linear system.









1 2 3 2 1
0 2 1 1 2
1 4 4 3 3
0 2 1 1 2





















x1

x2

x3

x4

x5













=









6
7
13
7








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50. Suppose Ax = b has a solution. Explain why the solution is unique precisely when Ax = 0

has only the trivial (zero) solution.

If not, then there would be a infintely many solutions to Ax = 0 and each of these added to a
solution to Ax = b would be a solution to Ax = b.

51. Show that if A is an m× n matrix, then ker (A) is a subspace.

If x,y ∈ ker (A) then
A (ax+by) = aAx+ bAy = a0+ b0 = 0

and so ker (A) is closed under linear combinations. Hence it is a subspace.

52. Verify the linear transformation determined by the matrix of 9.2 maps R3 onto R2 but the
linear transformation determined by this matrix is not one to one.

This matrix was

(

1 0 0
1 1 −1

)

. It cannot be one to one because the columns are linearly

dependent. It is onto because the columns clearly span R2 since the rank of the matrix is 2.
To see this take the row reduced echelon form.

B.11 Exercises 10.8

1. Find an LU factorization of





1 2 0
2 1 3
1 2 3



 .





1 2 0
2 1 3
1 2 3



 =





1 0 0
2 1 0
1 0 1









1 2 0
0 −3 3
0 0 3





2. Find an LU factorization of





1 2 3 2
1 3 2 1
5 0 1 3



 .





1 2 3 2
1 3 2 1
5 0 1 3



 =





1 0 0
1 1 0
5 −10 1









1 2 3 2
0 1 −1 −1
0 0 −24 −17





3. Find an LU factorization of the matrix,





1 −2 −5 0
−2 5 11 3
3 −6 −15 1



 .





1 −2 −5 0
−2 5 11 3
3 −6 −15 1



 =





1 0 0
−2 1 0
3 0 1









1 −2 −5 0
0 1 1 3
0 0 0 1





4. Find an LU factorization of the matrix,





1 −1 −3 −1
−1 2 4 3
2 −3 −7 −3



 .





1 −1 −3 −1
−1 2 4 3
2 −3 −7 −3



 =





1 0 0
−1 1 0
2 −1 1









1 −1 −3 −1
0 1 1 2
0 0 0 1




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5. Find an LU factorization of the matrix,





1 −3 −4 −3
−3 10 10 10
1 −6 2 −5



 .





1 −3 −4 −3
−3 10 10 10
1 −6 2 −5



 =





1 0 0
−3 1 0
1 −3 1









1 −3 −4 −3
0 1 −2 1
0 0 0 1





6. Find an LU factorization of the matrix,





1 3 1 −1
3 10 8 −1
2 5 −3 −3



 .





1 3 1 −1
3 10 8 −1
2 5 −3 −3



 =





1 0 0
3 1 0
2 −1 1









1 3 1 −1
0 1 5 2
0 0 0 1





7. Find an LU factorization of the matrix,









3 −2 1
9 −8 6
−6 2 2
3 2 −7









.









3 −2 1
9 −8 6
−6 2 2
3 2 −7









=









1 0 0 0
3 1 0 0
−2 1 1 0
1 −2 −2 1

















3 −2 1
0 −2 3
0 0 1
0 0 0









8. Find an LU factorization of the matrix,









−3 −1 3
9 9 −12
3 19 −16
12 40 −26









.

9. Find an LU factorization of the matrix,









−1 −3 −1
1 3 0
3 9 0
4 12 16









.









−1 −3 −1
1 3 0
3 9 0
4 12 16









=









1 0 0 0
−1 1 0 0
−3 0 1 0
−4 0 −4 1

















−1 −3 −1
0 0 −1
0 0 −3
0 0 0









10. Find the LU factorization of the coefficient matrix using Dolittle’s method and use it to solve
the system of equations.

x+ 2y = 5
2x+ 3y = 6

An LU factorization of the coefficient matrix is
(

1 2
2 3

)

=

(

1 0
2 1

)(

1 2
0 −1

)

First solve
(

1 0
2 1

)(

u
v

)

=

(

5
6

)

which gives

(

u
v

)

=

(

5
−4

)

. Then solve

(

1 2
0 −1

)(

x
y

)

=

(

5
−4

)
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which says that y = 4 and x = −3.

11. Find the LU factorization of the coefficient matrix using Dolittle’s method and use it to solve
the system of equations.

x+ 2y + z = 1
y + 3z = 2
2x+ 3y = 6

An LU factorization of the coefficient matrix is




1 2 1
0 1 3
2 3 0



 =





1 0 0
0 1 0
2 −1 1









1 2 1
0 1 3
0 0 1





First solve




1 0 0
0 1 0
2 −1 1









u
v
w



 =





1
2
6





which yields u = 1, v = 2, w = 6. Next solve





1 2 1
0 1 3
0 0 1









x
y
z



 =





1
2
6





This yields z = 6, y = −16, x = 27.

12. Find the LU factorization of the coefficient matrix using Dolittle’s method and use it to solve
the system of equations.

x+ 2y + 3z = 5
2x+ 3y + z = 6
x− y + z = 2

13. Find the LU factorization of the coefficient matrix using Dolittle’s method and use it to solve
the system of equations.

x+ 2y + 3z = 5
2x+ 3y + z = 6

3x+ 5y + 4z = 11

An LU factorization of the coefficient matrix is





1 2 3
2 3 1
3 5 4



 =





1 0 0
2 1 0
3 1 1









1 2 3
0 −1 −5
0 0 0





First solve




1 0 0
2 1 0
3 1 1









u
v
w



 =





5
6
11





Solution is:





u
v
w



 =





5
−4
0



 . Next solve





1 2 3
0 −1 −5
0 0 0









x
y
z



 =





5
−4
0




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Solution is:





x
y
z



 =





7t− 3
4− 5t

t



 , t ∈ R.

14. Is there only one LU factorization for a given matrix? Hint: Consider the equation
(

0 1
0 1

)

=

(

1 0
1 1

)(

0 1
0 0

)

.

Sometimes there is more than one LU factorization as is the case in this example. The above
equation clearly gives an LU factorization. However, it appears that

(

0 1
0 1

)

=

(

1 0
0 1

)(

0 1
0 1

)

also. Therefore, this is another.

15. Find a PLU factorization of





1 2 1
1 2 2
2 1 1



 .





1 2 1
1 2 2
2 1 1



 =





1 0 0
0 0 1
0 1 0









1 0 0
2 1 0
1 0 1









1 2 1
0 −3 −1
0 0 1





16. Find a PLU factorization of





1 2 1 2 1
2 4 2 4 1
1 2 1 3 2



 .





1 2 1 2 1
2 4 2 4 1
1 2 1 3 2



 =





1 0 0
0 1 0
0 0 1









1 0 0
2 1 0
1 0 1









1 2 1 2 1
0 0 0 0 −1
0 0 0 1 1





17. Find a PLU factorization of









1 2 1
1 2 2
2 4 1
3 2 1









.









1 2 1
1 2 2
2 4 1
3 2 1









=









1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

















1 0 0 0
3 1 0 0
2 0 1 0
1 0 −1 1

















1 2 1
0 −4 −2
0 0 −1
0 0 0









Here are steps for doing this. First use the top row to zero out the entries in the first column
which are below the top row. This yields









1 2 1
0 0 1
0 0 −1
0 −4 −2









Obviously there will be no way to obtain an LU factorization because a switch of rows must
be done. Switch the second and last row in the original matrix. This will yield one which does
have an LU factorization.









1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

















1 2 1
1 2 2
2 4 1
3 2 1









=









1 2 1
3 2 1
2 4 1
1 2 2








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=









1 0 0 0
3 1 0 0
2 0 1 0
1 0 −1 1

















1 2 1
0 −4 −2
0 0 −1
0 0 0









Then the original matrix is








1 2 1
1 2 2
2 4 1
3 2 1









=









1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

















1 0 0 0
3 1 0 0
2 0 1 0
1 0 −1 1

















1 2 1
0 −4 −2
0 0 −1
0 0 0









18. Find a PLU factorization of









1 2 1
2 4 1
1 0 2
2 2 1









and use it to solve the systems









1 2 1
2 4 1
1 0 2
2 2 1









=









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

















1 0 0 0
1 1 0 0
2 0 1 0
2 1 2 1

















1 2 1
0 −2 1
0 0 −1
0 0 0









(a)









1 2 1
2 4 1
1 0 2
2 2 1













x
y
z



 =









1
2
1
1









First solve








1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

















1 0 0 0
1 1 0 0
2 0 1 0
2 1 2 1

















t
u
v
w









=









1
2
1
1









This is not too hard because it is the same as solving








1 0 0 0
2 0 1 0
1 1 0 0
2 1 2 1

















t
u
v
w









=









1
2
1
1









Thus t = 1, v = 0, u = 0, w = −1. Next solve








1 2 1
0 −2 1
0 0 −1
0 0 0













x
y
z



 =









1
0
0
−1









which clearly has no solution. Thus the original problem has no solution either. Note
that the augmented matrix has the following row reduced echelon form.








1 2 1 1
2 4 1 2
1 0 2 1
2 2 1 1









, row echelon form:









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









Thus there is no solution.

(b)









1 2 1
2 4 1
1 0 2
2 2 1













x
y
z



 =









a
b
c
d








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There might not be any solution from part a. Thus suppose there is. First solve









1 0 0 0
2 0 1 0
1 1 0 0
2 1 2 1

















t
u
v
w









=









a
b
c
d

















t
u
v
w









=









a
c− a
b− 2a

3a− 2b− c+ d









. Next solve









1 2 1
0 −2 1
0 0 −1
0 0 0













x
y
z



 =









a
c− a
b− 2a

3a− 2b− c+ d









Note that there will be no solution unless 3a− 2b− c+ d = 0, but if this condition holds,
then the solution to the problem is





x
y
z



 =





2b− 4a+ c
3

2
a− 1

2
b− 1

2
c

2a− b





To check this, note that









1 2 1
2 4 1
1 0 2
2 2 1













2b− 4a+ c
3

2
a− 1

2
b− 1

2
c

2a− b



 =









a
b
c

2b− 3a+ c









where the bottom entry on the right equals d if there is any solution.

19. Find a PLU factorization of





0 2 1 2
2 1 −2 0
2 3 −1 2



 and use it to solve the systems





0 2 1 2
2 1 −2 0
2 3 −1 2



 =





0 1 0
1 0 0
0 0 1









1 0 0
0 1 0
1 1 1









2 1 −2 0
0 2 1 2
0 0 0 0





(a)





0 2 1 2
2 1 −2 0
2 3 −1 2













x
y
z
w









=





1
1
2





First solve




0 1 0
1 0 0
0 0 1









1 0 0
0 1 0
1 1 1









u
v
w



 =





1
1
2



 .

This is the same as solving





0 1 0
1 0 0
1 1 1









u
v
w



 =





1
1
2




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and the solution is clearly





1
1
0



. Next solve





2 1 −2 0
0 2 1 2
0 0 0 0













x
y
z
w









=





1
1
0





This is also fairly easy and gives




2 1 −2 0
0 2 1 2
0 0 0 0













x
y
z
w









=





1
1
0



, Solution is:









5

4
s+ 1

2
t+ 1

4
1

2
− t− 1

2
s

s
t









, s, t ∈ R.

Checking this,




0 2 1 2
2 1 −2 0
2 3 −1 2













5

4
s+ 1

2
t+ 1

4
1

2
− t− 1

2
s

s
t









=





1
1
2





so this appears to have worked.

(b)





0 2 1 2
2 1 −2 0
2 3 −1 2













x
y
z
w









=





2
1
3





First solve




0 1 0
1 0 0
1 1 1









u
v
w



 =





2
1
3





which yields





1
2
0



 . Next solve





2 1 −2 0
0 2 1 2
0 0 0 0













x
y
z
w









=





1
2
0













x
y
z
w









=









5

4
s+ 1

2
t

1− t− 1

2
s

s
t









, t, s ∈ R

Check:





0 2 1 2
2 1 −2 0
2 3 −1 2













5

4
s+ 1

2
t

1− t− 1

2
s

s
t









=





2
1
3





20. Find a QR factorization for the matrix





1 2 1
3 −2 1
1 0 2




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



1 2 1
3 −2 1
1 0 2



 =





1

11

√
11 13

66

√
2
√
11 − 1

6

√
2

3

11

√
11 − 5

66

√
2
√
11 − 1

6

√
2

1

11

√
11 1

33

√
2
√
11 2

3

√
2



 ·





√
11 − 4

11

√
11 6

11

√
11

0 6

11

√
2
√
11 2

11

√
2
√
11

0 0
√
2





21. Find a QR factorization for the matrix





1 2 1 0
3 0 1 1
1 0 2 1









1 2 1 0
3 0 1 1
1 0 2 1



 =





1

11

√
11 1

11

√
10
√
11 0

3

11

√
11 − 3

110

√
10
√
11 − 1

10

√
2
√
5

1

11

√
11 − 1

110

√
10
√
11 3

10

√
2
√
5



 ·





√
11 2

11

√
11 6

11

√
11 4

11

√
11

0 2

11

√
10
√
11 1

22

√
10
√
11 − 2

55

√
10
√
11

0 0 1

2

√
2
√
5 1

5

√
2
√
5





22. If you had a QR factorization, A = QR, describe how you could use it to solve the equation
Ax = b. This is not usually the way people solve this equation. However, the QR factor-
ization is of great importance in certain other problems, especially in finding eigenvalues and
eigenvectors.

You would have QRx = b and so then you would have Rx = QT
b. Now R is upper triangular

and so the solution of this problem is fairly simple.

B.12 Exercises 11.6

1. Maximize and minimize z = x1 − 2x2 + x3 subject to the constraints x1 + x2 + x3 ≤ 10, x1 +
x2 + x3 ≥ 2, and x1 + 2x2 + x3 ≤ 7 if possible. All variables are nonnegative.

The constraints lead to the augmented matrix





1 1 1 1 0 0 10
1 1 1 0 −1 0 2
1 2 1 0 0 1 7





The obvious solution is not feasible. Do a row operation.





1 1 1 1 0 0 10
0 0 0 1 1 0 8
0 1 0 −1 0 1 −3





An obvious solution is still not feasible. Do another operation couple of row operations.





1 1 1 0 −1 0 2
0 0 0 1 1 0 8
0 1 0 0 1 1 5




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At this point, you can spot an obvious feasible solution. Now assemble the simplex tableau.








1 1 1 0 −1 0 0 2
0 0 0 1 1 0 0 8
0 1 0 0 1 1 0 5
−1 2 −1 0 0 0 1 0









Now preserve the simple columns.








1 1 1 0 −1 0 0 2
0 0 0 1 1 0 0 8
0 1 0 0 1 1 0 5
0 2 0 0 −1 0 1 0









First lets work on minimizing this. There is a +2. The ratios are then 5, 2 so the pivot is the
1 on the top of the second column. The next tableau is









1 1 1 0 −1 0 0 2
0 0 0 1 1 0 0 8
−1 0 −1 0 2 1 0 3
−2 0 −2 0 1 0 1 −4









There is a 1 on the bottom. The ratios of interest for that column are 3/2, 8, and so the pivot
is the 2 in that column. Then the next tableau is









1

2
1 1

2
0 0 1

2
0 7

2
1

2
0 1

2
1 0 − 1

2
0 13

2

−1 0 −1 0 2 1 0 3
− 3

2
0 − 3

2
0 0 − 1

2
1 − 11

2









Now you stop because there are no more positive numbers to the left of 1 on the bottom row.
The minimum is −11/2 and it occurs when x1 = x3 = x6 = 0 and x2 = 7/2, x4 = 13/2, x6 =
−11/2.
Next consider maximization. The simplex tableau was









1 1 1 0 −1 0 0 2
0 0 0 1 1 0 0 8
0 1 0 0 1 1 0 5
−1 2 −1 0 0 0 1 0









This time you work on getting rid of the negative entries. Consider the −1 in the first column.
There is only one ratio to consider so 1 is the pivot.









1 1 1 0 −1 0 0 2
0 0 0 1 1 0 0 8
0 1 0 0 1 1 0 5
0 3 0 0 −1 0 1 2









There remains a −1. The ratios are 5 and 8 so the next pivot is the 1 in the third row and
column 5.









1 2 1 0 0 1 0 7
0 −1 0 1 0 −1 0 3
0 1 0 0 1 1 0 5
0 4 0 0 0 1 1 7









Then no more negatives remain so the maximum is 7 and it occurs when x1 = 7, x2 = 0, x3 =
0, x4 = 3, x5 = 5, x6 = 0.
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2. Maximize and minimize the following if possible. All variables are nonnegative.

(a) z = x1 − 2x2 subject to the constraints x1 + x2 + x3 ≤ 10, x1 + x2 + x3 ≥ 1, and
x1 + 2x2 + x3 ≤ 7

an augmented matrix for the constraints is




1 1 1 1 0 0 10
1 1 1 0 −1 0 1
1 2 1 0 0 1 7





The obvious solution is not feasible. Do some row operations.




0 0 0 1 1 0 9
1 1 1 0 −1 0 1
−1 0 −1 0 2 1 5





Now the obvious solution is feasible. Then include the objective function.








0 0 0 1 1 0 0 9
1 1 1 0 −1 0 0 1
−1 0 −1 0 2 1 0 5
−1 2 0 0 0 0 1 0









First preserve the simple columns.








0 0 0 1 1 0 0 9
1 1 1 0 −1 0 0 1
−1 0 −1 0 2 1 0 5
−3 0 −2 0 2 0 1 −2









Lets try to maximize first. Begin with the first column. The only pivot is the 1. Use it.








0 0 0 1 1 0 0 9
1 1 1 0 −1 0 0 1
0 1 0 0 1 1 0 6
0 3 1 0 −1 0 1 1









There is still a -1 on the bottom row to the left of the 1. The ratios are 9 and 6 so the
new pivot is the 1 on the third row.









0 −1 0 1 0 −1 0 3
1 2 1 0 0 1 0 7
0 1 0 0 1 1 0 6
0 4 1 0 0 1 1 7









Then the maximum is 7 when x1 = 7 and x1, x3 = 0.

Next consider the minimum.








0 0 0 1 1 0 0 9
1 1 1 0 −1 0 0 1
−1 0 −1 0 2 1 0 5
−3 0 −2 0 2 0 1 −2









There is a positive 2 in the bottom row left of 1. The pivot in that column is the 2.








1

2
0 1

2
1 0 − 1

2
0 13

2
1

2
1 1

2
0 0 1

2
0 7

2

−1 0 −1 0 2 1 0 5
−2 0 −1 0 0 −1 1 −7









The minimum is −7 and it happens when x1 = 0, x2 = 7/2, x3 = 0.
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(b) z = x1 − 2x2 − 3x3 subject to the constraints x1 + x2 + x3 ≤ 8, x1 + x2 + 3x3 ≥ 1, and
x1 + x2 + x3 ≤ 7

This time, lets use artificial variables to find an initial simplex tableau. Thus you add in
an artificial variable and then do a minimization procedure.









1 1 1 1 0 0 0 0 8
1 1 3 0 −1 0 1 0 1
1 1 1 0 0 1 0 0 7
0 0 0 0 0 0 −1 1 0









First preserve the seventh column as a simple column by a row operation.








1 1 1 1 0 0 0 0 8
1 1 3 0 −1 0 1 0 1
1 1 1 0 0 1 0 0 7
1 1 3 0 −1 0 0 1 1









Now use the third column.








2

3

2

3
0 1 1

3
0 − 1

3
0 23

3

1 1 3 0 −1 0 1 0 1
2

3

2

3
0 0 1

3
1 − 1

3
0 20

3

0 0 0 0 0 0 −1 1 0









It follows that a basic solution is feasible if




2

3

2

3
0 1 1

3
0 23

3

1 1 3 0 −1 0 1
2

3

2

3
0 0 1

3
1 20

3





Now assemble the simplex tableau








2

3

2

3
0 1 1

3
0 0 23

3

1 1 3 0 −1 0 0 1
2

3

2

3
0 0 1

3
1 0 20

3

−1 2 3 0 0 0 1 0









Preserve the simple columns by doing row operations.








2

3

2

3
0 1 1

3
0 0 23

3

1 1 3 0 −1 0 0 1
2

3

2

3
0 0 1

3
1 0 20

3

−2 1 0 0 1 0 1 −1









Lets do minimization first. Work with the second column.








0 0 −2 1 1 0 0 7
1 1 3 0 −1 0 0 1
0 0 −2 0 1 1 0 6
−3 0 −3 0 2 0 1 −2









Recall how you have to pick the pivot correctly. There is still a positive number in the
bottom row left of the 1. Work with that column.









0 0 0 1 0 −1 0 1
1 1 1 0 0 1 0 7
0 0 −2 0 1 1 0 6
−3 0 1 0 0 −2 1 −14








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There is still a positive number to the left of 1 on the bottom row.








0 0 0 1 0 −1 0 1
1 1 1 0 0 1 0 7
2 2 0 0 1 3 0 20
−4 −1 0 0 0 −3 1 −21









It follows that the minimum is −21 and it occurs when x1 = x2 = 0, x3 = 7.

Next consider the maximum. The simplex tableau was








2

3

2

3
0 1 1

3
0 0 23

3

1 1 3 0 −1 0 0 1
2

3

2

3
0 0 1

3
1 0 20

3

−2 1 0 0 1 0 1 −1









Use the first column.








0 0 −2 1 1 0 0 7
1 1 3 0 −1 0 0 1
0 0 −2 0 1 1 0 6
0 3 6 0 −1 0 1 1









There is still a negative on the bottom row to the left of 1.








0 0 0 1 0 −1 0 1
1 1 1 0 0 1 0 7
0 0 −2 0 1 1 0 6
0 3 4 0 0 1 1 7









There are no more negatives on the bottom row left of 1 so stop. The maximum is 7 and
it occurs when x1 = 7, x2 = 0, x3 = 0.

(c) z = 2x1 + x2 subject to the constraints x1 − x2 + x3 ≤ 10, x1 + x2 + x3 ≥ 1, and
x1 + 2x2 + x3 ≤ 7.

The augmented matrix for the constraints is




1 −1 1 1 0 0 10
1 1 1 0 −1 0 1
1 2 1 0 0 1 7





The basic solution is not feasible because of that −1. Lets do a row operation to change
this. I used the 1 in the second column as a pivot and zeroed out what was above and
below it. Now it seems that the basic solution is feasible.





2 0 2 1 −1 0 11
1 1 1 0 −1 0 1
−1 0 −1 0 2 1 5





Assemble the simplex tableau.








2 0 2 1 −1 0 0 11
1 1 1 0 −1 0 0 1
−1 0 −1 0 2 1 0 5
−2 −1 0 0 0 0 1 0









Then do a row operation to preserve the simple columns.








2 0 2 1 −1 0 0 11
1 1 1 0 −1 0 0 1
−1 0 −1 0 2 1 0 5
−1 0 1 0 −1 0 1 1








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Lets do minimization first. Work with the third column because there is a positive entry
on the bottom.









0 −2 0 1 1 0 0 9
1 1 1 0 −1 0 0 1
0 1 0 0 1 1 0 6
−2 −1 0 0 0 0 1 0









It follows that the minimum is 0 and it occurs when x1 = x2 = 0, x3 = 1.

Now lets maximize.








2 0 2 1 −1 0 0 11
1 1 1 0 −1 0 0 1
−1 0 −1 0 2 1 0 5
−1 0 1 0 −1 0 1 1









Lets begin with the first column.








0 −2 0 1 1 0 0 9
1 1 1 0 −1 0 0 1
0 1 0 0 1 1 0 6
0 1 2 0 −2 0 1 2









There is still a −2 to the left of 1 in the bottom row.








0 −3 0 1 0 −1 0 3
1 2 1 0 0 1 0 7
0 1 0 0 1 1 0 6
0 3 2 0 0 2 1 14









There are no negatives left so the maximum is 14 and it happens when x1 = 7, x2 = x3 =
0.

(d) z = x1 + 2x2 subject to the constraints x1 − x2 + x3 ≤ 10, x1 + x2 + x3 ≥ 1, and
x1 + 2x2 + x3 ≤ 7.

The augmented matrix for the constraints is




1 −1 1 1 0 0 10
1 1 1 0 −1 0 1
1 2 1 0 0 1 7





Of course the obvious or basic solution is not feasible. Do a row operation involving a
pivot in the second row to try and fix this.





2 0 2 1 −1 0 11
1 1 1 0 −1 0 1
−1 0 −1 0 2 1 5





Now all is well. Begin to assemble the simplex tableau.








2 0 2 1 −1 0 0 11
1 1 1 0 −1 0 0 1
−1 0 −1 0 2 1 0 5
−1 −2 0 0 0 0 1 0









Do a row operation to preserve the simple columns.








2 0 2 1 −1 0 0 11
1 1 1 0 −1 0 0 1
−1 0 −1 0 2 1 0 5
1 0 2 0 −2 0 1 2








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Next lets maximize. There is only one negative number in the bottom left of 1.









3

2
0 3

2
1 0 1

2
0 27

2
1

2
1 1

2
0 0 1

2
0 7

2

−1 0 −1 0 2 1 0 5
0 0 1 0 0 1 1 7









Thus the maximum is 7 and it happens when x2 = 7/2, x3 = x1 = 0.

Next lets find the minimum.








2 0 2 1 −1 0 0 11
1 1 1 0 −1 0 0 1
−1 0 −1 0 2 1 0 5
1 0 2 0 −2 0 1 2









Start with the column which has a 2.








0 −2 0 1 1 0 0 9
1 1 1 0 −1 0 0 1
0 1 0 0 1 1 0 6
−1 −2 0 0 0 0 1 0









There are no more positive numbers so the minimum is 0 when x1 = x2 = 0, x3 = 1.

3. Consider contradictory constraints, x1 + x2 ≥ 12 and x1 + 2x2 ≤ 5. You know these two
contradict but show they contradict using the simplex algorithm.

You can do this by using artificial variables, x5. Thus





1 1 −1 0 1 0 12
1 2 0 1 0 0 5
0 0 0 0 −1 1 0





Do a row operation to preserve the simple columns.





1 1 −1 0 1 0 12
1 2 0 1 0 0 5
1 1 −1 0 0 1 12





Next start with the 1 in the first column.




0 −1 −1 −1 1 0 7
1 2 0 1 0 0 5
0 −1 −1 −1 0 1 7





Thus the minimum value of z = x5 is 7 but, for there to be a feasible solution, you would need
to have this minimum value be 0.

4. Find a solution to the following inequalities for x, y ≥ 0 if it is possible to do so. If it is not
possible, prove it is not possible.

(a)
6x+ 3y ≥ 4
8x+ 4y ≤ 5

Use an artificial variable. Let x1 = x, x2 = y and slack variables x3, x4 with artificial
variable x5. Then minimize x5 as described earlier.




6 3 −1 0 1 0 4
8 4 0 1 0 0 5
0 0 0 0 −1 1 0




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Keep the simple columns.




6 3 −1 0 1 0 4
8 4 0 1 0 0 5
6 3 −1 0 0 1 4





Now proceed to minimize.




0 0 −1 − 3

4
1 0 1

4

8 4 0 1 0 0 5
0 0 −1 − 3

4
0 1 1

4





It appears that the minimum value of x5 is 1/4 and so there is no solution to these
inequalities with x1, x2 ≥ 0.

(b)
6x1 + 4x3 ≤ 11

5x1 + 4x2 + 4x3 ≥ 8
6x1 + 6x2 + 5x3 ≤ 11

The augmented matrix is




6 0 4 1 0 0 11
5 4 4 0 −1 0 8
6 6 5 0 0 1 11





It is not clear whether there is a solution which has all variables nonnegative. However,
if you do a row operation using 5 in the first column as a pivot, you get





0 − 24

5
− 4

5
1 6

5
0 7

5

5 4 4 0 −1 0 8
0 6

5

1

5
0 6

5
1 7

5





and so a solution is x1 = 8/5, x2 = x3 = 0.

(c)
6x1 + 4x3 ≤ 11

5x1 + 4x2 + 4x3 ≥ 9
6x1 + 6x2 + 5x3 ≤ 9

The augmented matrix is




6 0 4 1 0 0 11
5 4 4 0 −1 0 9
6 6 5 0 0 1 9





Lets include an artificial variable and seek to minimize x7.








6 0 4 1 0 0 0 0 11
5 4 4 0 −1 0 1 0 9
6 6 5 0 0 1 0 0 9
0 0 0 0 0 0 −1 1 0









Preserving the simple columns,








6 0 4 1 0 0 0 0 11
5 4 4 0 −1 0 1 0 9
6 6 5 0 0 1 0 0 9
5 4 4 0 −1 0 0 1 9









Use the first column.








0 −6 −1 1 0 −1 0 0 2
0 −1 − 1

6
0 −1 − 5

6
1 0 3

2

6 6 5 0 0 1 0 0 9
0 −1 − 1

6
0 −1 − 5

6
0 1 3

2








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It appears that the minimum value for x7 is 3/2 and so there will be no solution to these
inequalities for which all the variables are nonnegative.

(d)
x1 − x2 + x3 ≤ 2
x1 + 2x2 ≥ 4
3x1 + 2x3 ≤ 7

The augmented matrix is





1 −1 1 1 0 0 2
1 2 0 0 −1 0 4
3 0 2 0 0 1 7





Lets add in an artificial variable and set things up to minimize this artificial variable.









1 −1 1 1 0 0 0 0 2
1 2 0 0 −1 0 1 0 4
3 0 2 0 0 1 0 0 7
0 0 0 0 0 0 −1 1 0









Then








1 −1 1 1 0 0 0 0 2
1 2 0 0 −1 0 1 0 4
3 0 2 0 0 1 0 0 7
1 2 0 0 −1 0 0 1 4









Work with second column.








3

2
0 1 1 − 1

2
0 1

2
0 4

1 2 0 0 −1 0 1 0 4
3 0 2 0 0 1 0 0 7
0 0 0 0 0 0 −1 1 0









It appears the minimum value of x7 is 0 and so this will mean there is a solution when
x2 = 2, x3 = 0, x1 = 0.

(e)
5x1 − 2x2 + 4x3 ≤ 1
6x1 − 3x2 + 5x3 ≥ 2
5x1 − 2x2 + 4x3 ≤ 5

The augmented matrix is





5 −2 4 1 0 0 1
6 −3 5 0 −1 0 2
5 −2 4 0 0 1 5





lets introduce an artificial variable x7 and then minimize x7.









5 −2 4 1 0 0 0 0 1
6 −3 5 0 −1 0 1 0 2
5 −2 4 0 0 1 0 0 5
0 0 0 0 0 0 −1 1 0









Then, preserving the simple columns,









5 −2 4 1 0 0 0 0 1
6 −3 5 0 −1 0 1 0 2
5 −2 4 0 0 1 0 0 5
6 −3 5 0 −1 0 0 1 2








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work with the first column.








5 −2 4 1 0 0 0 0 1
0 − 3

5

1

5
− 6

5
−1 0 1 0 4

5

0 0 0 −1 0 1 0 0 4
0 − 3

5

1

5
− 6

5
−1 0 0 1 4

5









There is still a positive entry.








5 −2 4 1 0 0 0 0 1
− 1

4
− 1

2
0 − 5

4
−1 0 1 0 3

4

0 0 0 −1 0 1 0 0 4
− 1

4
− 1

2
0 − 5

4
−1 0 0 1 3

4









It appears that there is no solution to this system of inequalities because the minimum
value of x7 is not 0.

5. Minimize z = x1 + x2 subject to x1 + x2 ≥ 2, x1 + 3x2 ≤ 20, x1 + x2 ≤ 18. Change to a
maximization problem and solve as follows: Let yi = M − xi. Formulate in terms of y1, y2.

You could find the maximum of 2M −x1−x2 for the given constraints and this would happen
when x1+x2 is as small as possible. Thus you would maximize y1+y2 subject to the constraints

M − y1 +M − y2 ≥ 2

M − y1 + 3 (M − y2) ≤ 20

M − y1 +M − y2 ≤ 18

To simplify, this would be

2M − 2 ≥ y1 + y2

4M − 20 ≤ y1 + 3y2

2M − 18 ≤ y1 + y2

You could simply regard M as large enough that yi ≥ 0 and use the techniques just developed.
The augmented matrix for the constraints is then





1 1 1 0 0 2M − 2
1 3 0 −1 0 4M − 20
1 1 0 0 −1 2M − 18





Here M is large. Use the 3 as a pivot to zero out above and below it.





2

3
0 1 1

3
0 2

3
M + 14

3

1 3 0 −1 0 4M − 20
2

3
0 0 1

3
−1 2

3
M − 34

3





Then it is still the case that the basic solution is not feasible. Lets use the bottom row and
pick the 2/3 as a pivot.





0 0 1 0 1 16
0 3 0 − 3

2

3

2
3M − 3

2

3
0 0 1

3
−1 2

3
M − 34

3





Now it appears that the basic solution is feasible provided M is large. Then assemble the
simplex tableau.









0 0 1 0 1 0 16
0 3 0 − 3

2

3

2
0 3M − 3

2

3
0 0 1

3
−1 0 2

3
M − 34

3

−1 −1 0 0 0 1 0








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Do row operations to preserve the simple columns.









0 0 1 0 1 0 16
0 3 0 − 3

2

3

2
0 3M − 3

2

3
0 0 1

3
−1 0 2

3
M − 34

3

0 0 0 0 −1 1 2M − 18









There is a negative number to the left of the 1 on the bottom row and we want to maximize
so work with this column. Assume M is very large. Then the pivot should be the top entry in
this column.









0 0 1 0 1 0 16
0 3 − 3

2
− 3

2
0 0 3M − 27

2

3
0 1 1

3
0 0 2

3
M + 14

3

0 0 1 0 0 1 2M − 2









It follows that the maximum of y1 + y2 is 2M − 2 and it happens when y1 = M + 7, y2 =
M − 9, y3 = 0. Thus the minimum of x1 + x2 is

M − y1 +M − y2 = M − (M + 7) +M − (M − 9) = 2

B.13 Exercises 12.4

1. State the eigenvalue problem from an algebraic perspective.

2. State the eigenvalue problem from a geometric perspective.

3. If A is the matrix of a linear transformation which rotates all vectors in R
2 through 30◦, explain

why A cannot have any real eigenvalues.

If it did have λ ∈ R as an eigenvalue, then there would exist a vector x such that Ax = λx
for λ a real number. Therefore, Ax and x would need to be parallel. However, this doesn’t
happen because A rotates the vectors.

4. If A is an n× n matrix and c is a nonzero constant, compare the eigenvalues of A and cA.

Say Ax = λx. Then cAx = cλx and so the eigenvalues of cA are just cλ where λ is an eigenvalue
of A.

5. If A is an invertible n× n matrix, compare the eigenvalues of A and A−1. More generally, for
m an arbitrary integer, compare the eigenvalues of A and Am.

Am
x = λm

x for any integer. In the case of −1, A−1λx = AA−1
x = x so A−1

x = λ−1
x. Thus

the eigenvalues of A−1 are just λ−1 where λ is an eigenvalue of A.

6. Let A,B be invertible n × n matrices which commute. That is, AB = BA. Suppose x is an
eigenvector of B. Show that then Ax must also be an eigenvector for B.

BAx = ABx = Aλx = λAx. Here is is assumed that Bx = λx.

7. Suppose A is an n × n matrix and it satisfies Am = A for some m a positive integer larger
than 1. Show that if λ is an eigenvalue of A then |λ| equals either 0 or 1.

Let x be the eigenvector. Then Am
x = λm

x,Am
x = Ax = λx and so

λm = λ

Hence if λ 6= 0, then
λm−1 = 1

and so |λ| = 1.
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8. Show that if Ax = λx and Ay = λy, then whenever a, b are scalars,

A (ax+ by) = λ (ax+ by) .

Does this imply that ax+ by is an eigenvector? Explain.

The formula is obvious from properties of matrix multiplications. However, this vector might
not be an eigenvector because it might equal 0 and

Eigenvectors are never 0

9. Find the eigenvalues and eigenvectors of the matrix




−1 −1 7
−1 0 4
−1 −1 5



 .

Determine whether the matrix is defective.




−1 −1 7
−1 0 4
−1 −1 5



, eigenvectors:







3
1
1







↔ 1,







2
1
1







↔ 2. This is a defective matrix.

10. Find the eigenvalues and eigenvectors of the matrix




−3 −7 19
−2 −1 8
−2 −3 10



 .

Determine whether the matrix is defective.




−3 −7 19
−2 −1 8
−2 −3 10



, eigenvectors:











3
1
1











↔ 1,











1
2
1











↔ 2,











2
1
1











↔ 3

This matrix has distinct eigenvalues so it is not defective.

11. Find the eigenvalues and eigenvectors of the matrix




−7 −12 30
−3 −7 15
−3 −6 14



 .

Determine whether the matrix is defective.




−7 −12 30
−3 −7 15
−3 −6 14



, eigenvectors:











−2
1
0



 ,





5
0
1











↔ −1,











2
1
1











↔ 2

This matrix is not defective because, even though λ = 1 is a repeated eigenvalue, it has a 2
dimensional eigenspace.

12. Find the eigenvalues and eigenvectors of the matrix




7 −2 0
8 −1 0
−2 4 6



 .

Determine whether the matrix is defective.




7 −2 0
8 −1 0
−2 4 6



, eigenvectors:











− 1

2

−1
1











↔ 3,











0
0
1











↔ 6

This matrix is defective.
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13. Find the eigenvalues and eigenvectors of the matrix





3 −2 −1
0 5 1
0 2 4



 .

Determine whether the matrix is defective.




3 −2 −1
0 5 1
0 2 4



, eigenvectors:











1
0
0



 ,





0
− 1

2

1











↔ 3,











−1
1
1











↔ 6

This matrix is not defective.

14. Find the eigenvalues and eigenvectors of the matrix





6 8 −23
4 5 −16
3 4 −12





Determine whether the matrix is defective.

15. Find the eigenvalues and eigenvectors of the matrix





5 2 −5
12 3 −10
12 4 −11



 .

Determine whether the matrix is defective.




5 2 −5
12 3 −10
12 4 −11



, eigenvectors:











− 1

3

1
0



 ,





5

6

0
1











↔ −1

This matrix is defective. In this case, there is only one eigenvalue, −1 of multiplicity 3 but the
dimension of the eigenspace is only 2.

16. Find the eigenvalues and eigenvectors of the matrix





20 9 −18
6 5 −6
30 14 −27



 .

Determine whether the matrix is defective.




20 9 −18
6 5 −6
30 14 −27



, eigenvectors:











3

4
1

4

1











↔ −1,











1

2

1
1











↔ 2,











9

13
3

13

1











↔ −3

Not defective.

17. Find the eigenvalues and eigenvectors of the matrix





1 26 −17
4 −4 4
−9 −18 9



 .

Determine whether the matrix is defective.
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18. Find the eigenvalues and eigenvectors of the matrix





3 −1 −2
11 3 −9
8 0 −6



 .

Determine whether the matrix is defective.




3 −1 −2
11 3 −9
8 0 −6



, eigenvectors:











3

4
1

4

1











↔ 0 This one is defective.

19. Find the eigenvalues and eigenvectors of the matrix





−2 1 2
−11 −2 9
−8 0 7



 .

Determine whether the matrix is defective.




−2 1 2
−11 −2 9
−8 0 7



, eigenvectors:











3

4
1

4

1











↔ 1

This is defective.

20. Find the eigenvalues and eigenvectors of the matrix





2 1 −1
2 3 −2
2 2 −1



 .

Determine whether the matrix is defective.




2 1 −1
2 3 −2
2 2 −1



, eigenvectors:











−1
1
0



 ,





1
0
1











↔ 1,











1

2

1
1











↔ 2

This is non defective.

21. Find the complex eigenvalues and eigenvectors of the matrix





4 −2 −2
0 2 −2
2 0 2



 .





4 −2 −2
0 2 −2
2 0 2



, eigenvectors:











1
−1
1











↔ 4,











−i
−i
1











↔ 2− 2i,











i
i
1











↔ 2 + 2i

22. Find the eigenvalues and eigenvectors of the matrix





9 6 −3
0 6 0
−3 −6 9



 .

Determine whether the matrix is defective.
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



9 6 −3
0 6 0
−3 −6 9



, eigenvectors:











−2
1
0



 ,





1
0
1











↔ 6,











−1
0
1











↔ 12

This is nondefective.

23. Find the complex eigenvalues and eigenvectors of the matrix





4 −2 −2
0 2 −2
2 0 2



 . Determine

whether the matrix is defective.




4 −2 −2
0 2 −2
2 0 2



, eigenvectors:











1
−1
1











↔ 4,











−i
−i
1











↔ 2− 2i,











i
i
1











↔ 2 + 2i

24. Find the complex eigenvalues and eigenvectors of the matrix





−4 2 0
2 −4 0
−2 2 −2



 . Determine

whether the matrix is defective.




−4 2 0
2 −4 0
−2 2 −2



, eigenvectors:











0
0
1



 ,





1
1
0











↔ −2,











1
−1
1











↔ −6

This is not defective.

25. Find the complex eigenvalues and eigenvectors of the matrix





1 1 −6
7 −5 −6
−1 7 2



 . Determine

whether the matrix is defective.




1 1 −6
7 −5 −6
−1 7 2



, eigenvectors:











1
−1
1











↔ −6,











−i
−i
1











↔ 2− 6i,











i
i
1











↔ 2 + 6i

This is not defective.

26. Find the complex eigenvalues and eigenvectors of the matrix





4 2 0
−2 4 0
−2 2 6



 . Determine

whether the matrix is defective.




4 2 0
−2 4 0
−2 2 6



, eigenvectors:











0
0
1











↔ 6,











1
−i
1











↔ 4− 2i,











1
i
1











↔ 4 + 2i

This is not defective.
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27. Let A be a real 3 × 3 matrix which has a complex eigenvalue of the form a + ib where b 6= 0.
Could A be defective? Explain. Either give a proof or an example.

The characteristic polynomial is of degree three and it has real coefficients. Therefore, there
is a real root and two distinct complex roots. It follows that A cannot be defective because it
has three distinct eigenvalues.

28. Let T be the linear transformation which reflects vectors about the x axis. Find a matrix for
T and then find its eigenvalues and eigenvectors.

The matrix of T is

(

1 0
0 −1

)

.

(

1 0
0 −1

)

, eigenvectors:

{(

0
1

)}

↔ −1,
{(

1
0

)}

↔ 1

29. Let T be the linear transformation which rotates all vectors in R2 counterclockwise through
an angle of π/2. Find a matrix of T and then find eigenvalues and eigenvectors.

A =

(

0 −1
1 0

)

(

0 −1
1 0

)

, eigenvectors:

{(

−i
1

)}

↔ −i,
{(

i
1

)}

↔ i

30. Let A be the 2× 2 matrix of the linear transformation which rotates all vectors in R
2 through

an angle of θ. For which values of θ does A have a real eigenvalue?

When you think of this geometrically, it is clear that the only two values of θ are 0 and π or
these added to integer multiples of 2π.

31. Let T be the linear transformation which reflects all vectors in R3 through the xy plane. Find
a matrix for T and then obtain its eigenvalues and eigenvectors.

A =





1 0 0
0 1 0
0 0 −1









1 0 0
0 1 0
0 0 −1



, eigenvectors:











0
0
1











↔ −1,











1
0
0



 ,





0
1
0











↔ 1

32. Find the principle direction for stretching for the matrix,














13

9

2

15

√
5 8

45

√
5

2

15

√
5 6

5

4

15

8

45

√
5 4

15

61

45















.

The eigenvalues are 2 and 1.

Corresponding to λ = 2, you have the eigenvector





1

2

√
5

3

4

1



 . This is the principal direction

for stretching.

33. Find the principle directions for the matrix,








5

2
− 1

2
0

− 1

2

5

2
0

0 0 1








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Recall these directions are just the eigenvectors of the matrix.








5

2
− 1

2
0

− 1

2

5

2
0

0 0 1









, eigenvectors:











0
0
1











↔ 1,











1
1
0











↔ 2,











−1
1
0











↔ 3

34. Suppose the migration matrix for three locations is




.5 0 .3

.3 .8 0

.2 .2 .7



 .

Find a comparison for the populations in the three locations after a long time.








1/2 0 3/10
3/10 4/5 0
1/5 1/5 7/10



−





1 0 0
0 1 0
0 0 1









=





− 1

2
0 3

10
3

10
− 1

5
0

1

5

1

5
− 3

10





Now find a nonzero vector which is sends to 0.




− 1

2
0 3

10
0

3

10
− 1

5
0 0

1

5

1

5
− 3

10
0



, row echelon form:





1 0 − 3

5
0

0 1 − 9

10
0

0 0 0 0





Therefore, the eigenvectors are of the form

t





6
9
1





you will have the following percentages in the three locations.




37. 5
56. 25
6. 25





35. Suppose the migration matrix for three locations is




.1 .1 .3

.3 .7 0

.6 .2 .7



 .

Find a comparison for the populations in the three locations after a long time.

It is like the above problem. You need to find the nonzero vectors which the matrix





−9/10 1/10 3/10
3/10 −3/10 0
3/5 1/5 −3/10





sends to 0. These vectors are of the form

t





3
3
8



 , t ∈ R

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



Exercises 83

and so in terms of percentages in the various locations,




21. 429
21. 429
57. 143





36. You own a trailer rental company in a large city and you have four locations, one in the South
East, one in the North East, one in the North West, and one in the South West. Denote these
locations by SE,NE,NW, and SW respectively. Suppose you observe that in a typical day, .8
of the trailers starting in SE stay in SE, .1 of the trailers in NE go to SE, .1 of the trailers
in NW end up in SE, .2 of the trailers in SW end up in SE, .1 of the trailers in SE end up
in NE,.7 of the trailers in NE end up in NE,.2 of the trailers in NW end up in NE,.1 of the
trailers in SW end up in NE, .1 of the trailers in SE end up in NW, .1 of the trailers in NE
end up in NW, .6 of the trailers in NW end up in NW, .2 of the trailers in SW end up in NW,
0 of the trailers in SE end up in SW, .1 of the trailers in NE end up in SW, .1 of the trailers in
NW end up in SW, .5 of the trailers in SW end up in SW. You begin with 20 trailers in each
location. Approximately how many will you have in each location after a long time? Will any
location ever run out of trailers?

A table for the above information is

SE NE NW SW
SE 4/5 1/10 1/10 1/5
NE 1/10 7/10 1/5 1/10
NW 1/10 1/10 3/5 1/5
SW 0 1/10 1/10 1/2

Then you need to find the vectors which the following matrix sends to 0.








−1/5 1/10 1/10 1/5
1/10 −3/10 1/5 1/10
1/10 1/10 −2/5 1/5
0 1/10 1/10 −1/2









Thus write the augmented matrix and fine row reduced echelon form.








1 0 0 − 7

2
0

0 1 0 − 29

10
0

0 0 1 − 21

10
0

0 0 0 0 0









It follows that the eigenvectors are of the form

t









7/2
29/10
21/10
1









You need to choose t such that the sum of the entries of this vector equals the total number
of trailors. This number is 80. Hence
19

2
t = 80, Solution is: 160

19
. Therefore, you would have









29. 474
24. 421
17. 684
8. 421 1









approximately the following numbers in the various locations.
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37. Let A be the n×n, n > 1, matrix of the linear transformation which comes from the projection
v→ proj

w
(v). Show that A cannot be invertible. Also show that A has an eigenvalue equal

to 1 and that for λ an eigenvalue, |λ| ≤ 1.

Obviously A cannot be onto because the range of A has dimension 1 and the dimension of this
space should be 3 if the matrix is onto. Therefore, A cannot be invertible. Its row reduced
echelon form cannot be I since if it were, A would be onto. Aw = w so it has an eigenvalue
equal to 1. Now suppose Ax = λx. Thus, from the Cauchy Schwarz inequality,

|x| = |x| |w|
|w|2

|w| ≥ |(x,w)|
|w|2

|w| = |λ| |x|

and so |λ| ≤ 1.

38. Let v be a unit vector and let A = I − 2vvT . Show that A has an eigenvalue equal to −1.
Lets see what it does to v.

(

I − 2vvT

)

v = v − 2v
(

v
T

v
)

= v − 2v =(−1)v

Yes. It has an eigenvector and the eigenvalue is −1.

39. Let M be an n × n matrix and suppose x1, · · · ,xn are n eigenvectors which form a linearly
independent set. Form the matrix S by making the columns these vectors. Show that S−1

exists and that S−1MS is a diagonal matrix (one having zeros everywhere except on the
main diagonal) having the eigenvalues of M on the main diagonal. When this can be done the
matrix is diagonalizable.

Since the vectors are linearly independent, the matrix S has an inverse. Denoting this inverse
by

S−1 =







w
T

1

...
w

T

n







it follows by definition that
w

T

i
xj = δij .

Therefore,

S−1MS = S−1 (Mx1, · · · ,Mxn) =







w
T

1

...
w

T

n






(λ1x1, · · · , λnxn)

=







λ1 0
. . .

0 λn







40. Show that a matrix, M is diagonalizable if and only if it has a basis of eigenvectors. Hint:

The first part is done in Problem 39. It only remains to show that if the matrix can be
diagonalized by some matrix, S giving D = S−1MS for D a diagonal matrix, then it has a
basis of eigenvectors. Try using the columns of the matrix S.

The formula says that
MS = SD

Letting xk denote the kth column of S, it follows from the way we multiply matrices that

Mxk = λkxk

where λk is the kth diagonal entry on D.
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41. Suppose A is an n× n matrix which is diagonally dominant. This means

|aii| >
∑

j

|aij | .

Show that A−1 must exist.

The diagonally dominant condition implies that none of the Gerschgorin disks contain 0.
Therefore, 0 is not an eigenvalue. Hence A is one to one, hence invertible.

42. Is it possible for a nonzero matrix to have only 0 as an eigenvalue?

Sure.

(

0 1
0 0

)

works.

43. Let M be an n× n matrix. Then define the adjoint of M,denoted by M∗ to be the transpose
of the conjugate of M. For example,

(

2 i
1 + i 3

)

∗

=

(

2 1− i
−i 3

)

.

A matrix, M, is self adjoint if M∗ = M. Show the eigenvalues of a self adjoint matrix are all
real. If the self adjoint matrix has all real entries, it is called symmetric.

First note that (AB)
∗

= B∗A∗. Say Mx = λx,x 6= 0. Then

λ |x|2 = λx∗x = (λx)
∗

x = (Mx)
∗

x = x
∗M∗

x

= x
∗Mx = x

∗λx = λ |x|2

Hence λ = λ.

44. Suppose A is an n×nmatrix consisting entirely of real entries but a+ib is a complex eigenvalue
having the eigenvector, x+ iy. Here x and y are real vectors. Show that then a− ib is also an
eigenvalue with the eigenvector, x− iy. Hint: You should remember that the conjugate of a
product of complex numbers equals the product of the conjugates. Here a + ib is a complex
number whose conjugate equals a− ib.

Ax = (a+ ib)x. Now take conjugates of both sides. Since A is real,

Ax = (a− ib)x

45. Recall an n × n matrix is said to be symmetric if it has all real entries and if A = AT . Show
the eigenvectors and eigenvalues of a real symmetric matrix are real.

These matrices are self adjoint by definition, so this follows from the above problems.

46. Recall an n× n matrix is said to be skew symmetric if it has all real entries and if A = −AT .
Show that any nonzero eigenvalues must be of the form ib where i2 = −1. In words, the
eigenvalues are either 0 or pure imaginary. Show also that the eigenvectors corresponding to
the pure imaginary eigenvalues are imaginary in the sense that every entry is of the form ix
for x ∈ R.

Suppose A is skew symmetric. Then what about iA?

(iA)
∗

= −iA∗ = −iAT = iA

and so iA is self adjoint. Hence it has all real eigenvalues. Therefore, the eigenvalues of A are
all of the form iλ where λ is real. Now what about the eigenvectors? You need

Ax = iλx
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where λ 6= 0 is real and A is real. Then

ARe (x) = iλRe (x)

The left has all real entries and the right has all pure imaginary entries. Hence Re (x) = 0 and
so x has all imaginary entries.

47. A discreet dynamical system is of the form

x (k + 1) = Ax (k) , x (0) = x0

where A is an n× n matrix and x (k) is a vector in Rn. Show first that

x (k) = Ak

x0

for all k ≥ 1. If A is nondefective so that it has a basis of eigenvectors, {v1, · · · ,vn} where

Avj = λjvj

you can write the initial condition x0 in a unique way as a linear combination of these eigen-
vectors. Thus

x0 =

n
∑

j=1

ajvj

Now explain why

x (k) =
n

∑

j=1

ajA
k

vj =
n

∑

j=1

ajλ
k

j
vj

which gives a formula for x (k) , the solution of the dynamical system.

The first formula is obvious from induction. Thus

Ak

x0 =

n
∑

j=1

ajA
k

vj =

n
∑

j=1

ajλ
k

j
vj

because if Av = λv, then if Ak
x = λk

x, do A to both sides. Thus Ak+1
x = λk+1

x.

48. Suppose A is an n× n matrix and let v be an eigenvector such that Av = λv. Also suppose
the characteristic polynomial of A is

det (λI −A) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0

Explain why
(

An + an−1A
n−1 + · · ·+ a1A+ a0I

)

v = 0

If A is nondefective, give a very easy proof of the Cayley Hamilton theorem based on this.
Recall this theorem says A satisfies its characteristic equation,

An + an−1A
n−1 + · · ·+ a1A+ a0I = 0.

49. Suppose an n× n nondefective matrix A has only 1 and −1 as eigenvalues. Find A12.

From the above formula,

A12
x0 =

n
∑

j=1

ajλ
12

j
vj =

n
∑

j=1

ajvj = x0

Thus A12 = I.
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50. Suppose the characteristic polynomial of an n× n matrix A is 1 − λn. Find Amn where m is
an integer. Hint: Note first that A is nondefective. Why?

The eigenvalues are distinct because they are the nth roots of 1. Hence from the above formula,
if x is a given vector with

x =

n
∑

j=1

ajvj

then

Anm

x = Anm

n
∑

j=1

ajvj =
n
∑

j=1

ajA
nm

vj =
n
∑

j=1

ajvj = x

so Anm = I.

51. Sometimes sequences come in terms of a recursion formula. An example is the Fibonacci
sequence.

x0 = 1 = x1, xn+1 = xn + xn−1

Show this can be considered as a discreet dynamical system as follows.
(

xn+1

xn

)

=

(

1 1
1 0

)(

xn

xn−1

)

,

(

x1

x0

)

=

(

1
1

)

Now find a formula for xn.

What are the eigenvalues and eigenvectors of this matrix?
(

1 1
1 0

)

, eigenvectors:

{(

1

2
− 1

2

√
5

1

)}

↔ 1

2
− 1

2

√
5,

{(

1

2

√
5 + 1

2

1

)}

↔ 1

2

√
5 +

1

2

Now also
(

1

2
− 1

10

√
5

)(

1

2
− 1

2

√
5

1

)

+

(

1

10

√
5 +

1

2

)(

1

2

√
5 + 1

2

1

)

=

(

1
1

)

Therefore, the solution is of the form
(

xn+1

xn

)

=

(

1

2
− 1

10

√
5

)(

1

2
− 1

2

√
5

)

n
(

1

2
− 1

2

√
5

1

)

+

(

1

10

√
5 +

1

2

)(

1

2

√
5 +

1

2

)

n
(

1

2

√
5 + 1

2

1

)

In particular,

xn =

(

1

2
− 1

10

√
5

)(

1

2
− 1

2

√
5

)

n

+

(

1

10

√
5 +

1

2

)(

1

2

√
5 +

1

2

)

n

52. Let A be an n× n matrix having characteristic polynomial

det (λI −A) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0

Show that a0 = (−1)n det (A).
The characteristic polynomial equals det (λI −A) . To get the constant term, you plug in λ = 0
and obtain det (−A) = (−1)n det (A).
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53. Find

(

3

2
1

− 1

2
0

)35

. Next find

lim
n→∞

(

3

2
1

− 1

2
0

)

n

(

2 −1
−1 1

)(

1 0
0 1/2n

)(

1 1
1 2

)

=

(

3

2
1

− 1

2
0

)

Now it follows that
(

3

2
1

− 1

2
0

)

n

=

(

2− 1

2n
2− 2

2n

1

2n
− 1 2

2n
− 1

)

Therefore, the above limit equals
(

2 2
−1 −1

)

54. Find eA where A is the matrix

(

3

2
1

− 1

2
0

)

in the above problem.

This is easy to do. It is just

(

2 −1
−1 1

)(

e 0

0 e1/2

)(

1 1
1 2

)

=

(

2e− e
1

2 2e− 2e
1

2

e
1

2 − e 2e
1

2 − e

)

B.14 Exercises 13.8

1. Here are some matrices. Label according to whether they are symmetric, skew symmetric, or
orthogonal. If the matrix is orthogonal, determine whether it is proper or improper.

(a)











1 0 0
0 1

√

2
− 1
√

2

0 1
√

2

1
√

2











This one is orthogonal and is a proper transformation.

(b)





1 2 −3
2 1 4
−3 4 7





This is symmetric.

(c)





0 −2 −3
2 0 −4
3 4 0





This one is skew symmetric.

2. Show that every real matrix may be written as the sum of a skew symmetric and a symmetric
matrix. Hint: If A is an n× n matrix, show that B ≡ 1

2

(

A−AT

)

is skew symmetric.

A = A+A
T

2
+ A−A

T

2
.

3. Let x be a vector in Rn and consider the matrix, I− 2xx
T

|x|
2 . Show this matrix is both symmetric

and orthogonal.
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(

I − 2xx
T

|x|
2

)

T

= I − 2xx
T

|x|
2 so it is symmetric.

(

I − 2xxT

|x|2

)(

I − 2xxT

|x|2

)

= I + 4
xx

T
xx

T

|x|4
− 4

xx
T

|x|2

= I + 4
xx

T

|x|4
− 4

xx
T

|x|2
= I

because x
T
x = 1.

4. For U an orthogonal matrix, explain why ||Ux|| = ||x|| for any vector, x. Next explain why if
U is an n× n matrix with the property that ||Ux|| = ||x|| for all vectors, x, then U must be
orthogonal. Thus the orthogonal matrices are exactly those which preserve distance.

‖Ux‖2 = (Ux, Ux) =
(

UTUx,x
)

= (Ix,x) = ‖x‖2

Next suppose distance is preserved by U. Then

(U (x+ y) , U (x+ y)) = ‖Ux‖2 + ‖Uy‖2 + 2 (Ux,Uy)

= ‖x‖2 + ‖y‖2 + 2
(

UTUx,y
)

But since U preserves distances, it is also the case that

(U (x+ y) , U (x+ y)) = ‖x‖2 + ‖y‖2 + 2 (x,y)

Hence
(x,y) =

(

UTUx,y
)

and so
((

UTU − I
)

x,y
)

= 0

Since y is arbitrary, it follows that UTU − I = 0. Thus U is orthogonal.

5. A quadratic form in three variables is an expression of the form a1x
2 + a2y

2 + a3z
2 + a4xy +

a5xz + a6yz. Show that every such quadratic form may be written as

(

x y z
)

A





x
y
z





where A is a symmetric matrix.

(

x y z
)





a1 a4/2 a5/2
a4/2 a2 a6/2
a5/2 a6/2 a3









x
y
z





6. Given a quadratic form in three variables, x, y, and z, show there exists an orthogonal matrix,
U and variables x′, y′, z′ such that





x
y
z



 = U





x′

y′

z′





with the property that in terms of the new variables, the quadratic form is

λ1 (x
′)
2
+ λ2 (y

′)
2
+ λ3 (z

′)
2

where the numbers, λ1, λ2, and λ3 are the eigenvalues of the matrix, A in Problem 5.
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The quadratic form may be written as
x
TAx

where A = AT . By the theorem about diagonalizing a symmetric matrix, there exists an
orthogonal matrix U such that

UTAU = D, A = UDUT

Then the quadratic form is

x
TUDUT

x =
(

UT

x
)

T

D
(

UT

x
)

where D is a diagonal matrix having the real eigenvalues of A down the main diagonal. Now
simply let

x
′ ≡ UT

x.

7. If A is a symmetric invertible matrix, is it always the case that A−1 must be symmetric also?
How about Ak for k a positive integer? Explain.

If A is symmetric, then A = UTDU for some D a diagonal matrix in which all the diagonal

entries are non zero. Hence A−1 = U−1D−1U−T . Now U−1U−T =
(

UTU
)

−1
= I−1 = I and

so A−1 = QD−1QT , where Q is orthogonal. Is this thing on the right symmetric? Take its
transpose. This is QD−1QT which is the same thing, so it appears that a symmetric matrix
must have symmetric inverse. Now consider raising it to a power.

Ak = UTDkU

and the right side is clearly symmetric.

8. If A,B are symmetric matrices, does it follow that AB is also symmetric?

Let A =

(

2 1
1 3

)

, B =

(

1 1
1 0

)

AB =

(

2 1
1 3

)(

1 1
1 0

)

=

(

3 2
4 1

)

which is not symmetric.

9. Suppose A,B are symmetric and AB = BA. Does it follow that AB is symmetric?

(AB)T = BTAT = BA = AB so the answer in this case is yes.

10. Here are some matrices. What can you say about the eigenvalues of these matrices just by
looking at them?

(a)





0 0 0
0 0 −1
0 1 0





The eigenvalues are all within 1 of 0, and pure imaginary or zero.

(b)





1 2 −3
2 1 4
−3 4 7





The eigenvalues are in D (1, 6) ∪D (7, 7). They are also real.

(c)





0 −2 −3
2 0 −4
3 4 0





The eigenvalues are all imaginary or 0. They are no farther than 7 from 0.
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(d)





1 2 3
0 2 3
0 0 2





The eigenvalues are 1,2,2.

11. Find the eigenvalues and eigenvectors of the matrix





c 0 0
0 0 −b
0 b 0



 .Here b, c are real numbers.





c 0 0
0 0 −b
0 b 0



, eigenvectors:











1
0
0











↔ c,











0
−i
1











↔ −ib,











0
i
1











↔ ib

12. Find the eigenvalues and eigenvectors of the matrix





c 0 0
0 a −b
0 b a



. Here a, b, c are real

numbers.




c 0 0
0 a −b
0 b a



, eigenvectors:











0
−i
1











↔ a− ib,











0
i
1











↔ a+ ib,











1
0
0











↔ c

13. Find the eigenvalues and an orthonormal basis of eigenvectors for A.

A =





11 −1 −4
−1 11 −4
−4 −4 14



 .

Hint: Two eigenvalues are 12 and 18.




11 −1 −4
−1 11 −4
−4 −4 14



, eigenvectors:







1
√

3





1
1
1











↔ 6,







1
√

2





−1
1
0











↔ 12,







1
√

6





−1
−1
2











↔ 18

14. Find the eigenvalues and an orthonormal basis of eigenvectors for A.

A =





4 1 −2
1 4 −2
−2 −2 7



 .

Hint: One eigenvalue is 3.




4 1 −2
1 4 −2
−2 −2 7



, eigenvectors:







1
√

2





−1
1
0



 , 1
√

3





1
1
1











↔ 3,







1
√

6





−1
−1
2











↔ 9

15. Show that if A is a real symmetric matrix and λ and µ are two different eigenvalues, then if x
is an eigenvector for λ and y is an eigenvector for µ, then x · y = 0. Also all eigenvalues are
real. Supply reasons for each step in the following argument. First

λxT

x = (Ax)
T

x
(CD)

T
=D

T
C

T

= x
TAx

A is real
= x

TAx
λ is eigenvalue

= x
Tλx = λxT

x
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and so λ = λ. This shows that all eigenvalues are real. It follows all the eigenvectors are real.
Why?

Because A is real. Ax = λx, Ax = λx, so x+x is an eigenvector. Hence it can be assumed all
eigenvectors are real.

Now let x,y, µ and λ be given as above.

λ (x · y) = λx · y = Ax · y = x · Ay = x·µy = µ (x · y) = µ (x · y)

and so
(λ− µ)x · y = 0.

Since λ 6= µ, it follows x · y = 0.

16. Suppose U is an orthogonal n× n matrix. Explain why rank (U) = n.

You could observe that det
(

UUT

)

= (det (U))2 = 1 so det (U) 6= 0.

17. Show that if A is an Hermitian matrix and λ and µ are two different eigenvalues, then if x is
an eigenvector for λ and y is an eigenvector for µ, then x · y = 0. Also all eigenvalues are real.
Supply reasons for each step in the following argument. First

λx · x = Ax · x A Hermitian
= x·Ax = x·λx rule for complex inner product

= λx · x

and so λ = λ. This shows that all eigenvalues are real. Now let x,y, µ and λ be given as
above.

λ (x · y) = λx · y = Ax · y =

x ·Ay = x· µy
rule for complex inner product

= µ (x · y) = µ (x · y)

and so
(λ− µ)x · y = 0.

Since λ 6= µ, it follows x · y = 0.

18. Show that the eigenvalues and eigenvectors of a real matrix occur in conjugate pairs.

This follows from the observation that ifAx = λx, then Ax = λx

19. If a real matrix, A has all real eigenvalues, does it follow that A must be symmetric. If so,
explain why and if not, give an example to the contrary.

Certainly not.

(

1 3
0 2

)

20. Suppose A is a 3 × 3 symmetric matrix and you have found two eigenvectors which form an
orthonormal set. Explain why their cross product is also an eigenvector.

There exists another eigenvector such that, with these two you have an orthonormal basis. Let
the third eigenvector be u and the two given ones v1,v2. Then u is perpendicular to the two
given vectors and so it has either the same or opposite direction to the cross product. Hence
u =kv1 × v2 for some scalar k.

21. Study the definition of an orthonormal set of vectors. Write it from memory.

22. Determine which of the following sets of vectors are orthonormal sets. Justify your answer.

(a) {(1, 1) , (1,−1)}
This one is not orthonormal.
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(b)
{(

1
√

2
, −1
√

2

)

, (1, 0)
}

This one is not orthonormal.

(c)
{(

1

3
, 2

3
, 2
3

)

,
(

−2

3
, −1

3
, 2

3

)

,
(

2

3
, −2

3
, 1

3

)}





1/3 2/3 2/3
−2/3 −1/3 2/3
2/3 −2/3 1/3









1/3 2/3 2/3
−2/3 −1/3 2/3
2/3 −2/3 1/3





T

=





1 0 0
0 1 0
0 0 1



 so this is an or-

thonormal set of vectors.

23. Show that if {u1, · · · ,un} is an orthonormal set of vectors in Fn, then it is a basis. Hint: It
was shown earlier that this is a linearly independent set. If you wish, replace Fn with Rn. Do
this version if you do not know the dot product for vectors in Cn.

The vectors are linearly independent as shown earlier. If they do not span all of Fn, then there
is a vector v /∈ span (u1, · · · ,un). But then {u1, · · · ,un,v} would be a linearly independent
set which has more vectors than a spanning set, {e1, · · · , en} and this is a contradiction.

24. Fill in the missing entries to make the matrix orthogonal.













−1
√

2

−1
√

6

1
√

3

1
√

2
√

6

3













.













−1
√

2

−1
√

6

1
√

3

1
√

2

−1
√

6
a

0
√

6

3
b

























−1
√

2

−1
√

6

1
√

3

1
√

2

−1
√

6
a

0
√

6

3
b













T

=





1 1

3

√
3a− 1

3

1

3

√
3b− 1

3
1

3

√
3a− 1

3
a2 + 2

3
ab− 1

3
1

3

√
3b− 1

3
ab− 1

3
b2 + 2

3





Must have a = 1/
√
3, b = 1/

√
3













−1
√

2

−1
√

6

1
√

3

1
√

2

−1
√

6
1/
√
3

0
√

6

3
1/
√
3

























−1
√

2

−1
√

6

1
√

3

1
√

2

−1
√

6
1/
√
3

0
√

6

3
1/
√
3













T

=





1 0 0
0 1 0
0 0 1





25. Fill in the missing entries to make the matrix orthogonal.









2

3

√

2

2

1

6

√
2

2

3

0

















2

3

√

2

2

1

6

√
2

2

3

−

√

2

2
a

− 1

3
0 b

















2

3

√

2

2

1

6

√
2

2

3

−

√

2

2
a

− 1

3
0 b









T
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=





1 1

6

√
2a− 1

18

1

6

√
2b − 2

9
1

6

√
2a− 1

18
a2 + 17

18
ab− 2

9
1

6

√
2b− 2

9
ab− 2

9
b2 + 1

9





a = 1

3
√

2
, b = 4

3
√

2











2

3

√

2

2

1

6

√
2

2

3

−

√

2

2

1

3
√

2

− 1

3
0 4

3
√

2





















2

3

√

2

2

1

6

√
2

2

3

−

√

2

2

1

3
√

2

− 1

3
0 4

3
√

2











T

=





1 0 0
0 1 0
0 0 1





26. Fill in the missing entries to make the matrix orthogonal.








1

3
− 2
√

5

2

3
0

4

15

√
5









Try









1

3
− 2
√

5
c

2

3
0 d

2

3

1
√

5

4

15

√
5

















1

3
− 2
√

5
c

2

3
0 d

2

3

1
√

5

4

15

√
5









T

=





c2 + 41

45
cd+ 2

9

4

15

√
5c− 8

45

cd+ 2

9
d2 + 4

9

4

15

√
5d+ 4

9
4

15

√
5c− 8

45

4

15

√
5d+ 4

9
1





Would require that c = 2

3
√

5
, d = −5

3
√

5











1

3
− 2
√

5

2

3
√

5

2

3
0 −5

3
√

5

2

3

1
√

5

4

15

√
5





















1

3
− 2
√

5

2

3
√

5

2

3
0 −5

3
√

5

2

3

1
√

5

4

15

√
5











T

=





1 0 0
0 1 0
0 0 1



 so this seems to have worked.

27. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by finding
an orthogonal matrix, U and a diagonal matrix D such that UTAU = D.

A =





−1 1 1
1 −1 1
1 1 −1



 .

Hint: One eigenvalue is -2.




−1 1 1
1 −1 1
1 1 −1



, eigenvectors:











1

3

√
3

1

3

√
3

1

3

√
3











↔ 1,











− 1

2

√
2

1

2

√
2

0



 ,





− 1

6

√
6

− 1

6

√
6

1

3

√
2
√
3











↔ −2





√
3/3 −

√
2/2 −

√
6/6√

3/3
√
2/2 −

√
6/6√

3/3 0 1

3

√
2
√
3





T 



−1 1 1
1 −1 1
1 1 −1





·





√
3/3 −

√
2/2 −

√
6/6√

3/3
√
2/2 −

√
6/6√

3/3 0 1

3

√
2
√
3




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=





1 0 0
0 −2 0
0 0 −2





28. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by finding
an orthogonal matrix, U and a diagonal matrix D such that UTAU = D.

A =





17 −7 −4
−7 17 −4
−4 −4 14



 .

Hint: Two eigenvalues are 18 and 24.




17 −7 −4
−7 17 −4
−4 −4 14



, eigenvectors:











1

3

√
3

1

3

√
3

1

3

√
3











↔ 6,











− 1

6

√
6

− 1

6

√
6

1

3

√
2
√
3











↔ 18,











− 1

2

√
2

1

2

√
2

0











↔ 24 . The matrix U has these

as its columns.

29. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by finding
an orthogonal matrix, U and a diagonal matrix D such that UTAU = D.

A =





13 1 4
1 13 4
4 4 10



 .

Hint: Two eigenvalues are 12 and 18.




13 1 4
1 13 4
4 4 10



, eigenvectors:











− 1

6

√
6

− 1

6

√
6

1

3

√
2
√
3











↔ 6,











− 1

2

√
2

1

2

√
2

0











↔ 12,











1

3

√
3

1

3

√
3

1

3

√
3











↔ 18. The matrix U has these

as its columns.

30. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by finding
an orthogonal matrix, U and a diagonal matrix D such that UTAU = D.

A =















− 5

3

1

15

√
6
√
5 8

15

√
5

1

15

√
6
√
5 − 14

5
− 1

15

√
6

8

15

√
5 − 1

15

√
6 7

15















Hint: The eigenvalues are −3,−2, 1.














− 5

3

1

15

√
6
√
5 8

15

√
5

1

15

√
6
√
5 − 14

5
− 1

15

√
6

8

15

√
5 − 1

15

√
6 7

15















, eigenvectors:
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









1

6

√
6

0
1

6

√
5
√
6











↔ 1,











− 1

3

√
2
√
3

− 1

5

√
5

1

15

√
2
√
15











↔ −2,











− 1

6

√
6

2

5

√
5

1

30

√
30











↔ −3 These vectors are

the columns of U .

31. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by finding

an orthogonal matrix, U and a diagonal matrix D such that UTAU = D.

A =









3 0 0

0 3

2

1

2

0 1

2

3

2









.









3 0 0

0 3

2

1

2

0 1

2

3

2









, eigenvectors:











0

− 1

2

√
2

1

2

√
2











↔ 1,











0
1

2

√
2

1

2

√
2











↔ 2,











1

0

0











↔ 3. These vectors are the columns of

the matrix U .

32. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by finding

an orthogonal matrix, U and a diagonal matrix D such that UTAU = D.

A =





2 0 0

0 5 1

0 1 5



 .





2 0 0

0 5 1

0 1 5



, eigenvectors:











1

0

0











↔ 2,











0

− 1

2

√
2

1

2

√
2











↔ 4,











0
1

2

√
2

1

2

√
2











↔ 6. These vectors are the columns of

U .

33. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by finding

an orthogonal matrix, U and a diagonal matrix D such that UTAU = D.

A =















4

3

1

3

√
3
√
2 1

3

√
2

1

3

√
3
√
2 1 − 1

3

√
3

1

3

√
2 − 1

3

√
3 5

3















Hint: The eigenvalues are 0, 2, 2 where 2 is listed twice because it is a root of multiplicity 2.














4

3

1

3

√
3
√
2 1

3

√
2

1

3

√
3
√
2 1 − 1

3

√
3

1

3

√
2 − 1

3

√
3 5

3















, eigenvectors:
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









− 1

5

√
2
√
5

1

5

√
3
√
5

1

5

√
5











↔ 0,











1

3

√
3

0
1

3

√
2
√
3



 ,





1

5

√
2
√
5

1

5

√
3
√
5

− 1

5

√
5











↔ 2. The columns are these vec-

tors.

34. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by finding

an orthogonal matrix, U and a diagonal matrix D such that UTAU = D.

A =















1 1

6

√
3
√
2 1

6

√
3
√
6

1

6

√
3
√
2 3

2

1

12

√
2
√
6

1

6

√
3
√
6 1

12

√
2
√
6 1

2















Hint: The eigenvalues are 2, 1, 0.














1 1

6

√
3
√
2 1

6

√
3
√
6

1

6

√
3
√
2 3

2

1

12

√
2
√
6

1

6

√
3
√
6 1

12

√
2
√
6 1

2















, eigenvectors:











− 1

3

√
3

0
1

3

√
2
√
3











↔ 0,











1

3

√
3

− 1

2

√
2

1

6

√
6











↔ 1,











1

3

√
3

1

2

√
2

1

6

√
6











↔ 2. The columns are these

vectors.

35. Find the eigenvalues and an orthonormal basis of eigenvectors for the matrix,















1

3

1

6

√
3
√
2 − 7

18

√
3
√
6

1

6

√
3
√
2 3

2
− 1

12

√
2
√
6

− 7

18

√
3
√
6 − 1

12

√
2
√
6 − 5

6















Hint: The eigenvalues are 1, 2,−2.














1

3

1

6

√
3
√
2 − 7

18

√
3
√
6

1

6

√
3
√
2 3

2
− 1

12

√
2
√
6

− 7

18

√
3
√
6 − 1

12

√
2
√
6 − 5

6















, eigenvectors:











− 1

3

√
3

1

2

√
2

1

6

√
6











↔ 1,











1

3

√
3

0
1

3

√
2
√
3











↔ −2,











1

3

√
3

1

2

√
2

− 1

6

√
6











↔ 2. Then the columns of U

are these vectors.

36. Find the eigenvalues and an orthonormal basis of eigenvectors for the matrix,

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



98 Exercises















− 1

2
− 1

5

√
6
√
5 1

10

√
5

− 1

5

√
6
√
5 7

5
− 1

5

√
6

1

10

√
5 − 1

5

√
6 − 9

10















Hint: The eigenvalues are −1, 2,−1 where −1 is listed twice because it has multiplicity 2 as
a zero of the characteristic equation.














− 1

2
− 1

5

√
6
√
5 1

10

√
5

− 1

5

√
6
√
5 7

5
− 1

5

√
6

1

10

√
5 − 1

5

√
6 − 9

10















, eigenvectors:











− 1

6

√
6

0
1

6

√
5
√
6



 ,





1

3

√
2
√
3

1

5

√
5

1

15

√
2
√
15











↔ −1,











1

6

√
6

− 2

5

√
5

1

30

√
30











↔ 2. The columns of U are these

vectors.





− 1

6

√
6 1

3

√
2
√
3 1

6

√
6

0 1

5

√
5 − 2

5

√
5

1

6

√
5
√
6 1

15

√
2
√
15 1

30

√
30





T















− 1

2
− 1

5

√
6
√
5 1

10

√
5

− 1

5

√
6
√
5 7

5
− 1

5

√
6

1

10

√
5 − 1

5

√
6 − 9

10















·





− 1

6

√
6 1

3

√
2
√
3 1

6

√
6

0 1

5

√
5 − 2

5

√
5

1

6

√
5
√
6 1

15

√
2
√
15 1

30

√
30



 =





−1 0 0
0 −1 0
0 0 2





37. Explain why a matrix, A is symmetric if and only if there exists an orthogonal matrix, U such
that A = UTDU for D a diagonal matrix.

If A is given by the formula, then

AT = UTDTU = UTDU = A

Next supposeA = AT . Then by the theorems on symmetric matrices, there exists an orthogonal
matrix U such that

UAUT = D

for D diagonal. Hence
A = UTDU

38. The proof of Theorem 13.3.3 concluded with the following observation. If −ta + t2b ≥ 0 for
all t ∈ R and b ≥ 0, then a = 0. Why is this so?

If a 6= 0, then the derivative of the function f (t) = −ta + t2b is non zero at t = 0. However,
this requires that f (t) < 0 for values of t near 0.
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39. Using Schur’s theorem, show that whenever A is an n× n matrix, det (A) equals the product
of the eigenvalues of A.

There exists U unitary such that A = U∗TU such that T is uppser triangular. Thus A and T
are similar. Hence they have the same determinant. Therefore, det (A) = det (T ) , but det (T )
equals the product of the entries on the main diagonal which are the eigenvalues of A.

40. In the proof of Theorem 13.3.7 the following argument was used. If x ·w = 0 for all w ∈ Rn,
then x = 0. Why is this so?

Because you could let w = x.

41. Using Corollary 13.3.8 show that a real m×n matrix is onto if and only if its transpose is one
to one.

Let A be the matrix. Then y ∈ A (Fn) if and only if y ∈ ker
(

AT

)

⊥

. However, if AT is one

to one, then its kernel is 0 and so everything is in ker
(

AT

)

⊥

. Thus A is onto. On the other
hand, if A is onto, then if AT

x = 0,

0 = AT

x · y = x·Ay

Hence x · z = 0 for all z since A is onto and so x = 0. Thus AT is one to one.

42. Suppose A is a 3× 2 matrix. Is it possible that AT is one to one? What does this say about
A being onto? Prove your answer.

AT is a 2 × 3 and so it is not one to one by an earlier corollary. Not every column can be a
pivot column.

43. Find the least squares solution to the following system.

x+ 2y = 1
2x+ 3y = 2
3x+ 5y = 4





1 2
2 3
3 5





T




1 2
2 3
3 5



 =

(

14 23
23 38

)

(

14 23
23 38

)(

x
y

)

=





1 2
2 3
3 5





T




1
2
4



 =

(

17
28

)

(

14 23
23 38

)(

x
y

)

=

(

17
28

)

(

14 23
23 38

)(

x
y

)

=

(

17
28

)

, Solution is:

(

2

3
1

3

)

44. You are doing experiments and have obtained the ordered pairs,

(0, 1) , (1, 2) , (2, 3.5) ,

and (3, 4) . Find m and b such that y = mx + b approximates these four points as well as
possible. Now do the same thing for y = ax2 + bx + c, finding a, b, and c to give the best
approximation.
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I will do the second of these. You really want the following

0a+ 0b+ c = 1
a+ b+ c = 2

4a+ 2b+ c = 3.5
9a+ 3b+ c = 4

You look for a least squares solution to this.








0 0 1
1 1 1
4 2 1
9 3 1









T








0 0 1
1 1 1
4 2 1
9 3 1













a
b
c



 =









0 0 1
1 1 1
4 2 1
9 3 1









T





1
2
3.5









98 36 14
36 14 6
14 6 4









a
b
c



 =





52.0
21.0
10. 5









98 36 14
36 14 6
14 6 4









a
b
c



 =





52.0
21.0
10. 5



, Solution is:





−0.125
1. 425
0.925





45. Suppose you have several ordered triples, (xi, yi, zi) . Describe how to find a polynomial,

z = a+ bx+ cy + dxy + ex2 + fy2

for example giving the best fit to the given ordered triples. Is there any reason you have to
use a polynomial? Would similar approaches work for other combinations of functions just as
well?

You do something similar to the above. You write an equation which would be satisfied if each
(xi, yi, zi) were a real solution. Then you obtain the least squares solution.

46. Find an orthonormal basis for the spans of the following sets of vectors.

(a) (3,−4, 0) , (7,−1, 0) , (1, 7, 1).




3/5
−4/5
0



 ,





4/5
3/5
0



 ,





0
0
1





(b) (3, 0,−4) , (11, 0, 2) , (1, 1, 7)




3

5

0
− 4

5



 ,





4

5

0
3

5



 ,





0
1
0





(c) (3, 0,−4) , (5, 0, 10) , (−7, 1, 1)




3

5

0
− 4

5



 ,





4

5

0
3

5



 ,





0
1
0





47. Using the Gram Schmidt process, find an orthonormal basis for the span of the vectors,
(1, 2, 1) , (2,−1, 3) , and (1, 0, 0) .





1 2 1
2 −1 0
1 3 0



 =





1

6

√
6 3

10

√
2 7

15

√
3

1

3

√
6 − 2

5

√
2 − 1

15

√
3

1

6

√
6 1

2

√
2 − 1

3

√
3









√
6 1

2

√
6 1

6

√
6

0 5

2

√
2 3

10

√
2

0 0 7

15

√
3




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A solution is then




1

6

√
6

1

3

√
6

1

6

√
6



 ,





3

10

√
2

− 2

5

√
2

1

2

√
2



 ,





7

15

√
3

− 1

15

√
3

− 1

3

√
3





Actually, I used the QR decomposition to find this.

48. Using the Gram Schmidt process, find an orthonormal basis for the span of the vectors,
(1, 2, 1, 0) , (2,−1, 3, 1) , and (1, 0, 0, 1) .









1 2 1
2 −1 0
1 3 0
0 1 1









=









1

6

√
6 1

6

√
2
√
3 5

111

√
3
√
37 7

111

√
111

1

3

√
6 − 2

9

√
2
√
3 1

333

√
3
√
37 − 2

111

√
111

1

6

√
6 5

18

√
2
√
3 − 17

333

√
3
√
37 − 1

37

√
111

0 1

9

√
2
√
3 22

333

√
3
√
37 − 7

111

√
111









·









√
6 1

2

√
6 1

6

√
6

0 3

2

√
2
√
3 5

18

√
2
√
3

0 0 1

9

√
3
√
37

0 0 0









Then a solution is








1

6

√
6

1

3

√
6

1

6

√
6

0









,









1

6

√
2
√
3

− 2

9

√
2
√
3

5

18

√
2
√
3

1

9

√
2
√
3









,









5

111

√
3
√
37

1

333

√
3
√
37

− 17

333

√
3
√
37

22

333

√
3
√
37









49. The set, V ≡ {(x, y, z) : 2x+ 3y − z = 0} is a subspace of R3. Find an orthonormal basis for
this subspace.

The subspace is of the form




x
y

2x+ 3y





and a basis is





1
0
2



 ,





0
1
3



 Therefore, an orthonormal basis is





1

5

√
5

0
2

5

√
5



 ,





− 3

35

√
5
√
14

1

14

√
5
√
14

3

70

√
5
√
14





50. The two level surfaces, 2x + 3y − z + w = 0 and 3x− y + z + 2w = 0 intersect in a subspace
of R4, find a basis for this subspace. Next find an orthonormal basis for this subspace.

Using row reduced echelon form, it is easy to obtain








−2z − 7w
w + 5z
11z
11w









Thus a basis is








−2
5
11
0









,









−7
1
0
11








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Then an orthonormal basis is









− 1

15

√
6

1

6

√
6

11

30

√
6

0









,









− 46

3135

√
6
√
209

1

1254

√
6
√
209

− 1

330

√
6
√
209

5

209

√
6
√
209









51. Let A,B be a m× n matrices. Define an inner product on the set of m× n matrices by

(A,B)
F
≡ trace (AB∗) .

Show this is an inner product satisfying all the inner product axioms. Recall for M an n× n
matrix, trace (M) ≡∑

n

i=1
Mii. The resulting norm, ||·||

F
is called the Frobenius norm and it

can be used to measure the distance between two matrices.

It satisfies the properties of an inner product. Note that

trace (AB∗) =
∑

i

∑

k

AikBik =
∑

k

∑

i

AikBik = trace (BA∗)

so
(A,B)

F
= (B,A)

F

The product is obviously linear in the first argument. If (A,A)
F
= 0, then

∑

i

∑

k

AikAik =
∑

i,k

|Aik|2 = 0

52. Let A be an m× n matrix. Show

||A||2
F
≡ (A,A)

F
=

∑

j

σ2

j

where the σj are the singular values of A.

From the singular value decomposition,

U∗AV =

(

σ 0
0 0

)

, A = U

(

σ 0
0 0

)

V ∗

Then

trace (AA∗) = trace

(

U

(

σ 0
0 0

)

V ∗V

(

σ 0
0 0

)

U∗
)

= trace

(

U

(

σ2 0
0 0

)

U∗
)

= trace

(

σ2 0
0 0

)

=
∑

j

σ2

j

53. The trace of an n×n matrix M is defined as
∑

i
Mii. In other words it is the sum of the entries

on the main diagonal. If A,B are n×n matrices, show trace (AB) = trace (BA). Now explain
why if A = S−1BS it follows trace (A) = trace (B). Hint: For the first part, write these in
terms of components of the matrices and it just falls out.

trace (AB) =
∑

i

∑

k
AikBki, trace (BA) =

∑

i

∑

k
BikAki. These give the same thing. Now

trace (A) = trace
(

S−1BS
)

= trace
(

BSS−1
)

= trace (B) .
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54. Using Problem 53 and Schur’s theorem, show that the trace of an n×n matrix equals the sum
of the eigenvalues.

A = UTU∗ for some unitary U . Then the trace of A equals the trace of T. However, the trace
of T is just the sum of the eigenvalues of A.

55. If A is a general n× n matrix having possibly repeated eigenvalues, show there is a sequence
{Ak} of n× n matrices having distinct eigenvalues which has the property that the ijth entry
of Ak converges to the ijth entry of A for all ij. Hint: Use Schur’s theorem.

A = U∗TU where T is upper triangular and U is unitary. Change the diagonal entries of T
slightly so that the resulting upper triangular matrix Tk has all distinct diagonal entries and
Tk → T in the sense that the ijth entry of Tk converges to the ijth entry of T . Then let
Ak = U∗TkU. It follows that Ak → A in the sense that corresponding entries converge.

56. Prove the Cayley Hamilton theorem as follows. First suppose A has a basis of eigenvectors
{vk}nk=1

, Avk = λkvk. Let p (λ) be the characteristic polynomial. Show p (A)vk = p (λk)vk =
0. Then since {vk} is a basis, it follows p (A)x = 0 for all x and so p (A) = 0. Next in the
general case, use Problem 55 to obtain a sequence {Ak} of matrices whose entries converge
to the entries of A such that Ak has n distinct eigenvalues and therefore by Theorem 12.1.13
Ak has a basis of eigenvectors. Therefore, from the first part and for pk (λ) the characteristic
polynomial for Ak, it follows pk (Ak) = 0. Now explain why and the sense in which

lim
k→∞

pk (Ak) = p (A) .

First say A has a basis of eigenvectors {v1, · · · ,vn} . Ak
vj = λk

j
vj . Then it follows that

p (A)vk = p (λk)vk. Hence if x is any vector, let x =
∑

n

k=1
xkvk and it follows that

p (A)x = p (A)

(

n
∑

k=1

xkvk

)

=

n
∑

k=1

xkp (A)vk

=

n
∑

k=1

xkp (λk)vk =

n
∑

k=1

xk0vk = 0

Hence p (A) = 0. Now drop the assumption that A is nondefective. From the above, there exists
a sequence Ak which is non defective which converges to A and also pk (λ)→ p (λ) uniformly
on compact sets because these characteristic polynomials are defined in terms of determinants
of the corresponding matrix. See the above construction of the Ak. It is probably easiest to
use the Frobinius norm for the last part.

‖pk (Ak)− p (A)‖
F
≤ ‖pk (Ak)− p (Ak)‖F + ‖p (Ak)− p (A)‖

F

The first term converges to 0 because the convergence of Ak to A implies all entries of Ak lie
in a compact set. The second term converges to 0 also because the entries of Ak converge to
the corresponding entries of A.

57. Show that the Moore Penrose inverse A+ satisfies the following conditions.

AA+A = A, A+AA+ = A+, A+A, AA+ are Hermitian.

Next show that if A0 satisfies the above conditions, then it must be the Moore Penrose inverse
and that if A is an n × n invertible matrix, then A−1 satisfies the above conditions. Thus
the Moore Penrose inverse generalizes the usual notion of inverse but does not contradict it.
Hint: Let

U∗AV = Σ ≡
(

σ 0
0 0

)
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and suppose

V +A0U =

(

P Q
R S

)

where P is the same size as σ. Now use the conditions to identify P = σ,Q = 0 etc.

First recall what the Moore Penrose invers was in terms of the singular value decomposition.

It equals V

(

σ−1 0
0 0

)

U∗ where A = U

(

σ 0
0 0

)

V ∗ with U, V unitary and of the right

size. Therefore,

AA+A = U

(

σ 0
0 0

)

V ∗V

(

σ−1 0
0 0

)

U∗U

(

σ 0
0 0

)

V ∗

= U

(

σ 0
0 0

)

V ∗ = A

Next

A+AA+ = V

(

σ−1 0
0 0

)

U∗U

(

σ 0
0 0

)

V ∗V

(

σ−1 0
0 0

)

U∗

= V

(

σ−1 0
0 0

)

U∗ = A+

Next,

A+A = V

(

σ−1 0
0 0

)

U∗U

(

σ 0
0 0

)

V ∗ = V

(

I 0
0 0

)

V ∗

which is clearly Hermitian.

AA+ = U

(

σ 0
0 0

)

V ∗V

(

σ−1 0
0 0

)

U∗ = U

(

I 0
0 0

)

U∗

which is Hermitian.

Next suppose A0 satisfies the above Penrose conditions. Then

A0 = V

(

P Q
R S

)

U∗, A = U

(

σ 0
0 0

)

V ∗

and it is necessary to identify P,Q,R, S. Here P is the same size as σ.

A0A = V

(

P Q
R S

)

U∗U

(

σ 0
0 0

)

V ∗ = V

(

Pσ 0
Rσ 0

)

V ∗

= V

(

σP ∗ σR∗

0 0

)

V ∗

and so Rσ = 0 which implies R = 0.

AA0 = U

(

σ 0
0 0

)

V ∗V

(

P Q
0 S

)

U∗ = U

(

σP σQ
0 0

)

U∗

= U

(

P ∗σ 0
Q∗σ 0

)

U∗

Hence Q∗σ = 0 so Q = 0.

A0AA0 = V

(

P 0
0 S

)

U∗U

(

σ 0
0 0

)

V ∗V

(

P 0
0 S

)

U∗

= V

(

P 0
0 S

)(

σ 0
0 0

)(

P 0
0 S

)

U∗

= V

(

PσP 0
0 0

)

U∗ = A0 = V

(

P 0
0 S

)

U∗
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and so S = 0. Finally,

AA0A = U

(

σ 0
0 0

)

V ∗V

(

P 0
0 0

)

U∗U

(

σ 0
0 0

)

V ∗

= U

(

σ 0
0 0

)(

P 0
0 0

)(

σ 0
0 0

)

V ∗

= U

(

σPσ 0
0 0

)

V ∗ = U

(

σ 0
0 0

)

V ∗

Then σPσ = σ and so P = σ−1. Hence A0 = A+.

58. Find the least squares solution to





1 1
1 1
1 1 + ε





(

x
y

)

=





a
b
c





Next suppose ε is so small that all ε2 terms are ignored by the computer but the terms of
order ε are not ignored. Show the least squares equations in this case reduce to

(

3 3 + ε
3 + ε 3 + 2ε

)(

x
y

)

=

(

a+ b+ c
a+ b+ (1 + ε) c

)

.

Find the solution to this and compare the y values of the two solutions. Show that one of these
is −2 times the other. This illustrates a problem with the technique for finding least squares
solutions presented as the solutions to A∗Ax = A∗y. One way of dealing with this problem
is to use the QR factorization. This is illustrated in the next problem. It turns out that this
helps alleviate some of the round off difficulties of the above.

The least squares problem is

(

1 1 1
1 1 ε+ 1

)





1 1
1 1
1 1 + ε





(

x
y

)

=

(

1 1 1
1 1 ε+ 1

)





a
b
c





which reduces to
(

3 ε+ 3
ε+ 3 ε2 + 2ε+ 3

)(

x
y

)

=

(

a+ b+ c
a+ b+ c (ε+ 1)

)

and now, since the stupid computer doesn’t see ε2, what it sees is the following.

(

3 ε+ 3
ε+ 3 2ε+ 3

)(

x
y

)

=

(

a+ b+ c
a+ b+ c (ε+ 1)

)

This yields the solution

(

1

3ε2

(

ε2 (a+ b+ c)− (ε+ 3) (aε+ bε− 2cε)
)

1

3ε2
(3aε+ 3bε− 6cε)

)

So what is the real least squares solution?

(

1

6ε2

(

2ε2 (a+ b+ c) + (ε+ 3) (aε+ bε− 2cε)
)

− 1

6ε2
(3aε+ 3bε− 6cε)

)

The two y values are very different one is −2 times the other.
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59. Show that the equations A∗Ax = A∗y can be written as R∗Rx = R∗Q∗y where R is upper
triangular and R∗ is lower triangular. Explain how to solve this system efficiently. Hint: You
first find Rx and then you find x which will not be hard because R is upper triangular.

A = QR and so A∗ = R∗Q∗. Hence the least squares problem reduces to

R∗Q∗QRx = R∗Q∗y

R∗Rx =R∗Q∗y

Then you can solve this by first solving R∗z = R∗Q∗y. Next, after finding z, you would solve
for x in Rx = z.

B.15 Exercises 14.4

1. Solve the system




4 1 1
1 5 2
0 2 6









x
y
z



 =





2
1
3





using the Gauss Seidel method and the Jacobi method. Check your answer by also solving it
using row operations.




4 1 1
1 5 2
0 2 6









x
y
z



 =





2
1
3



, Solution is:





0.39
−0.09
0.53





2. Solve the system





4 1 1
1 7 2
0 2 4









x
y
z



 =





1
2
3





using the Gauss Seidel method and the Jacobi method. Check your answer by also solving it
using row operations.




4 1 1
1 7 2
0 2 4









x
y
z



 =





1
2
3



, Solution is:





5. 319 1× 10−2

7. 446 8× 10−2

0.712 77





3. Solve the system




5 1 1
1 7 2
0 2 4









x
y
z



 =





3
0
1





using the Gauss Seidel method and the Jacobi method. Check your answer by also solving it
using row operations.

4. Solve the system




7 1 0
1 5 2
0 2 6









x
y
z



 =





1
1
−1





using the Gauss Seidel method and the Jacobi method. Check your answer by also solving it
using row operations.




7 1 0
1 5 2
0 2 6









x
y
z



 =





1
1
−1



, Solution is:





0.102 27
0.284 09
−0.261 36




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5. Solve the system




5 0 1
1 7 1
0 2 4









x
y
z



 =





1
7
3





using the Gauss Seidel method and the Jacobi method. Check your answer by also solving it
using row operations.




5 0 1
1 7 1
0 2 4









x
y
z



 =





1
7
3



, Solution is:





0.143 94
0.939 39
0.280 3





6. Solve the system




5 0 1
1 7 1
0 2 9









x
y
z



 =





1
1
0





using the Gauss Seidel method and the Jacobi method. Check your answer by also solving it
using row operations.




5 0 1
1 7 1
0 2 9









x
y
z



 =





1
1
0



, Solution is:





0.205 21
0.117 26

−2. 605 9× 10−2





7. If you are considering a system of the form Ax = b and A−1 does not exist, will either the
Gauss Seidel or Jacobi methods work? Explain. What does this indicate about using either of
these methods for finding eigenvectors for a given eigenvalue?

It indicates that they are no good for doing it.

B.16 Exercises 15.5

1. Using the power method, find the eigenvalue correct to one decimal place having largest abso-

lute value for the matrix A =





0 −4 −4
7 10 5
−2 0 6



 along with an eigenvector associated with

this eigenvalue.




0 −4 −4
7 10 5
−2 0 6









1
0
0



 =





0
7
−2









0 −4 −4
7 10 5
−2 0 6









0
1

−2/7



 =





−2. 857 1
8. 571 4
−1. 714 3









0 −4 −4
7 10 5
−2 0 6









−0.333 33
1.0
−0.2



 =





−3. 2
6. 666 7
−0.533 34









0 −4 −4
7 10 5
−2 0 6









−0.480 00
1.0

−8. 000 1× 10−2



 =





−3. 680 0
6. 240 0
0.479 99









0 −4 −4
7 10 5
−2 0 6









−0.589 74
1.0

7. 692 1× 10−2



 =





−4. 307 7
6. 256 4
1. 641









0 −4 −4
7 10 5
−2 0 6









−0.688 53
1.0

0.262 29



 =





−5. 049 2
6. 491 7
2. 950 8




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



0 −4 −4
7 10 5
−2 0 6









−0.777 79
1.0

0.454 55



 =





−5. 818 2
6. 828 2
4. 282 9









0 −4 −4
7 10 5
−2 0 6









−0.852 08
1.0

0.627 24



 =





−6. 509 0
7. 171 6
5. 467 6









0 −4 −4
7 10 5
−2 0 6









−0.907 61
1.0

0.762 40



 =





−7. 049 6
7. 458 7
6. 389 6









0 −4 −4
7 10 5
−2 0 6









−0.945 15
1.0

0.856 66



 =





−7. 426 6
7. 667 3
7. 030 3









0 −4 −4
7 10 5
−2 0 6









−0.968 61
1.0

0.916 92



 =





−7. 667 7
7. 804 3
7. 438 7









0 −4 −4
7 10 5
−2 0 6









−0.982 50
1.0

0.953 15



 =





−7. 812 6
7. 888 3
7. 683 9





It looks like these scaling factors are not changing much so an approximate eigenvalue is 7.88.
The corresponding eigenvector is above. How well does it do?

7.88





−0.982 50
1.0

0.953 15



 =





−7. 742 1
7. 88

7. 510 8





so it is pretty good. The actual largest eigenvalue is 8.

2. Using the power method, find the eigenvalue correct to one decimal place having largest abso-

lute value for the matrix A =





15 6 1
−5 2 1
1 2 7



 along with an eigenvector associated with this

eigenvalue.




15 6 1
−5 2 1
1 2 7









1
1
1



 =





22
−2
10









15 6 1
−5 2 1
1 2 7









22
−2
10





1

22
=





164

11

− 52

11

4









15 6 1
−5 2 1
1 2 7









14. 909
−4. 727 3

4.0





1

14. 909
=





13. 366
−5. 365 9
2. 243 9









15 6 1
−5 2 1
1 2 7









13. 366
−5. 365 9
2. 243 9





1

13.366
=





12. 759
−5. 635
1. 372 3









15 6 1
−5 2 1
1 2 7









12. 759
−5. 635
1. 372 3





1

12. 759
=





12. 458
−5. 775 7
0.869 59









15 6 1
−5 2 1
1 2 7









12. 458
−5. 775 7
0.869 59





1

12. 458
=





12. 288
−5. 857 4
0.561 38




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



15 6 1
−5 2 1
1 2 7









12. 288
−5. 857 4
0.561 38





1

12.288
=





12. 186
−5. 907 7
0.366 44









15 6 1
−5 2 1
1 2 7









12. 186
−5. 907 7
0.366 44





1

12. 186
=





12. 121
−5. 939 5
0.240 91









15 6 1
−5 2 1
1 2 7









12. 121
−5. 939 5
0.240 91





1

12.121
=





12. 080
−5. 960 2
0.159 09









15 6 1
−5 2 1
1 2 7









12. 080
−5. 960 2
0.159 09





1

12.08
=





12. 053
−5. 973 6
0.105 40





It looks like the eigenvalue is about 12.05 and an eigenvector is





12. 053
−5. 973 6
0.105 40



. Actually, the

largest eigenvalue is 12.

3. Using the power method, find the eigenvalue correct to one decimal place having largest ab-

solute value for the matrix A =





10 4 2
−3 2 −1
0 0 4



 along with an eigenvector associated with

this eigenvalue.




10 4 2
−3 2 −1
0 0 4









1
1
1



 =





16.0
−2.0
4.0









10 4 2
−3 2 −1
0 0 4









16.0
−2.0
4.0





1

16
=





10.0
−3. 5
1.0









10 4 2
−3 2 −1
0 0 4









10.0
−3. 5
1.0





1

10
=





8. 8
−3. 8
0.4









10 4 2
−3 2 −1
0 0 4









8. 8
−3. 8
0.4





1

8.8
=





8. 363 6
−3. 909 1
0.181 82









10 4 2
−3 2 −1
0 0 4









8. 363 6
−3. 909 1
0.181 82





1

8.3636
=





8. 173 9
−3. 956 5

8. 695 8× 10−2









10 4 2
−3 2 −1
0 0 4









8. 173 9
−3. 956 5

8. 695 8× 10−2





1

8. 173 9
=





8. 085 1
−3. 978 7

4. 255 4× 10−2









10 4 2
−3 2 −1
0 0 4









8. 085 1
−3. 978 7

4. 255 4× 10−2





1

8. 085 1
=





8. 042 1
−3. 989 5

2. 105 3× 10−2





It looks like the eigenvalue is about 8.04 and the eigenvector is about





8. 042 1
−3. 989 5

2. 105 3× 10−2



 .
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The actual eigenvalue is 8 and an eigenvector is





8
−4
0





4. Using the power method, find the eigenvalue correct to one decimal place having largest abso-

lute value for the matrix A =





15 14 −3
−13 −18 9
5 10 −1



 along with an eigenvector associated with

this eigenvalue.

To make this go a little faster, I shall use a power of the given matrix.




15 14 −3
−13 −18 9
5 10 −1





7 



1
1
1



 =





140 484 608
−271 556 608
134 242 304









15 14 −3
−13 −18 9
5 10 −1





7 



− 17 149

33 149

1
− 16 387

33 149



 =





1. 326 3× 108

−2. 653 3× 108

1. 326 8× 108









15 14 −3
−13 −18 9
5 10 −1









1. 326 3× 108

−2. 653 3× 108

1. 326 8× 108





1

−2. 653 3×108
=





8. 002 1
−16. 002
8. 000 7









15 14 −3
−13 −18 9
5 10 −1









8. 002 1
−16. 002
8. 000 7





1

−16. 002
=





7. 998 9
−15. 999
7. 999 6





It looks like an eigenvalue is about −16 and an eigenvector is about





1
−2
1



 . In fact, this is

exactly right.




15 14 −3
−13 −18 9
5 10 −1









1
−2
1



 =





−16
32
−16



 .

5. In Example 15.3.3 an eigenvalue was found correct to several decimal places along with an
eigenvector. Find the other eigenvalues along with their eigenvectors.

The matrix was




1 2 3
2 2 1
3 1 4





This is a hard problem to find eigenvalues and eigenvectors. However, if the matrix is small, you
can sometimes find the eigenvalues simply by graphing the characteristic equation and zooming
in on the eigenvalues. I will do this first. The characteristic polynomial is x3− 7x2+15. Then
you can observe from the graph that there are eigenvalues near −1.35, 1.5, and 6.5. I will use
the shifted inverse power method to get closer and to also compute the eigenvectors. First lets
look for the eigenvalue closest to −1.35.









1 2 3
2 2 1
3 1 4



+ 1.35





1 0 0
0 1 0
0 0 1









−1

=





77. 671 −35. 341 −36. 948
−35. 341 16. 397 16. 753
−36. 948 16. 753 17. 774





Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



Exercises 111

Now we use the power method on this to find the largest eigenvalue.




77. 671 −35. 341 −36. 948
−35. 341 16. 397 16. 753
−36. 948 16. 753 17. 774









1
1
1



 =





5. 382
−2. 191
−2. 421









77. 671 −35. 341 −36. 948
−35. 341 16. 397 16. 753
−36. 948 16. 753 17. 774









5. 382
−2. 191
−2. 421





1

5. 382
=





108. 68
−49. 552
−51. 763









77. 671 −35. 341 −36. 948
−35. 341 16. 397 16. 753
−36. 948 16. 753 17. 774









108. 68
−49. 552
−51. 763





1

108. 68
=





111. 38
−50. 796
−53. 052









77. 671 −35. 341 −36. 948
−35. 341 16. 397 16. 753
−36. 948 16. 753 17. 774









1.0
−0.456 06
−0.476 32



 =





111. 39
−50. 799
−53. 054





This is a good time to stop. The scaling factors are not changing by much so we can now find
the eigenvector and eigenvalue. To get the eigenvalue, solve

1

λ+ 1.35
= 111.39

1

λ+1.35
= 111.39, Solution is: λ = −1. 341. The eigenvector is about





1.0
−0.456 06
−0.476 32



 . How

well does it work?




1 2 3
2 2 1
3 1 4









1.0
−0.456 06
−0.476 32



 =





−1. 341 1
0.611 56
0.638 66





−1. 341





1.0
−0.456 06
−0.476 32



 =





−1. 341
0.611 58
0.638 75





It worked very well.

Next consider the eigenvector and eigenvalue for the eigenvalue which is near 1.5.









1 2 3
2 2 1
3 1 4



− 1.5





1 0 0
0 1 0
0 0 1









−1

=





−9. 523 8× 10−2 0.761 9 −0.190 48
0.761 9 3. 904 8 −2. 476 2
−0.190 48 −2. 476 2 1. 619





Now we use the power method on this.




−9. 523 8× 10−2 0.761 9 −0.190 48
0.761 9 3. 904 8 −2. 476 2
−0.190 48 −2. 476 2 1. 619









1
1
1





=





0.476 18
2. 190 5
−1. 047 7









−9. 523 8× 10−2 0.761 9 −0.190 48
0.761 9 3. 904 8 −2. 476 2
−0.190 48 −2. 476 2 1. 619









0.476 18
2. 190 5
−1. 047 7





1

2. 190 5
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=





0.832 3
5. 254 8
−3. 292 0









−9. 523 8× 10−2 0.761 9 −0.190 48
0.761 9 3. 904 8 −2. 476 2
−0.190 48 −2. 476 2 1. 619









0.832 3
5. 254 8
−3. 292 0





1

5. 254 8

=





0.866 15
5. 576 8
−3. 520 6









−9. 523 8× 10−2 0.761 9 −0.190 48
0.761 9 3. 904 8 −2. 476 2
−0.190 48 −2. 476 2 1. 619









0.866 15
5. 576 8
−3. 520 6





1

5. 576 8

=





0.867 36
5. 586 3
−3. 527 8









−9. 523 8× 10−2 0.761 9 −0.190 48
0.761 9 3. 904 8 −2. 476 2
−0.190 48 −2. 476 2 1. 619









0.867 36
5. 586 3
−3. 527 8





1

5. 586 3

=





0.867 4
5. 586 8
−3. 528 2









−9. 523 8× 10−2 0.761 9 −0.190 48
0.761 9 3. 904 8 −2. 476 2
−0.190 48 −2. 476 2 1. 619









0.867 4
5. 586 8
−3. 528 2





1

5. 586 8

=





0.867 41
5. 586 9
−3. 528 2





At this point, the scaling factors are not changing by much, so the eigenvalue is obtained by
solving

1

λ− 1.5
= 5. 586 8

1

λ−1.5
= 5. 586 8, Solution is: 1. 679 0. An eigenvector is





0.867 41
5. 586 9
−3. 528 2



 . How well does it

work?




1 2 3
2 2 1
3 1 4









0.867 41
5. 586 9
−3. 528 2



 =





1. 456 6
9. 380 4
−5. 923 7





1. 679 0





0.867 41
5. 586 9
−3. 528 2



 =





1. 456 4
9. 380 4
−5. 923 8





Thus, it works very well indeed.

Finally, we look for the eigenvector which goes with the eigenvalue which is closest to 6.5.









1 2.0 3
2 2 1
3 1 4



− 6.5





1 0 0
0 1 0
0 0 1









−1

=





1. 673 5 1. 306 1 2. 530 6
1. 306 1 0.775 51 1. 877 6
2. 530 6 1. 877 6 3. 387 8




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Ans we use the power method for this last matrix.




1. 673 5 1. 306 1 2. 530 6
1. 306 1 0.775 51 1. 877 6
2. 530 6 1. 877 6 3. 387 8









1
1
1



 =





5. 510 2
3. 959 2
7. 796









1. 673 5 1. 306 1 2. 530 6
1. 306 1 0.775 51 1. 877 6
2. 530 6 1. 877 6 3. 387 8









5. 510 2
3. 959 2
7. 796





1

7. 796
=





4. 376 7
3. 194 6
6. 130 0









1. 673 5 1. 306 1 2. 530 6
1. 306 1 0.775 51 1. 877 6
2. 530 6 1. 877 6 3. 387 8









4. 376 7
3. 194 6
6. 130 0





1

6. 130 0
=





4. 406 1
3. 214 3
6. 173 1









1. 673 5 1. 306 1 2. 530 6
1. 306 1 0.775 51 1. 877 6
2. 530 6 1. 877 6 3. 387 8









4. 406 1
3. 214 3
6. 173 1





1

6. 173 1
=





4. 405 2
3. 213 6
6. 171 7





The scaling factors are not changing by much so the eigenvalue is approximately the solution
to

1

λ− 6.5
= 6. 171 7, λ = 6. 662

and the eigenvector is approximately





4. 405 2
3. 213 6
6. 171 7



 .

How well does it work?




1 2.0 3
2 2 1
3 1 4









4. 405 2
3. 213 6
6. 171 7



 =





29. 348
21. 409
41. 116





6. 662





4. 405 2
3. 213 6
6. 171 7



 =





29. 347
21. 409
41. 116





It seems to work pretty well.

6. Find the eigenvalues and eigenvectors of the matrix A =





3 2 1
2 1 3
1 3 2



 numerically. In this

case the exact eigenvalues are ±
√
3, 6. Compare with the exact answers.

I would like to get close to them so that the shifted inverse power method will work quickly.
The characteristic polynomial is x3 − 6x2 − 3x + 18. Then you can graph this to see about
where the eigenvalues are. If you do this, you find that there is one near 2, one near −2, and
one near 6.

First consider the one near 6.








3 2 1
2 1 3
1 3 2



− 6





1 0 0
0 1 0
0 0 1









−1

does not even exist so in fact 6 is an eigenvalue. So

how can I find an eigenvector? Just use row operations. In fact




3 2 1
2 1 3
1 3 2









1
1
1



 =





6
6
6



 so





1
1
1



 is an eigenvector.

Now lets look for the one near −2
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







3 2 1
2 1 3
1 3 2



+ 2





1 0 0
0 1 0
0 0 1









−1

=





0.375 −0.625 0.375
−0.625 2. 375 −1. 625
0.375 −1. 625 1. 375



Now you sure don’t

want to use





1
1
1



 as an initial approximation. This cannot work because in this case, it

is an eigenvector for another eigenvalue. This would be a very unlucky choice. I must try
something else.




0.375 −0.625 0.375
−0.625 2. 375 −1. 625
0.375 −1. 625 1. 375





6 



1
0
1



 =





450. 33
−1680. 7
1230. 3









0.375 −0.625 0.375
−0.625 2. 375 −1. 625
0.375 −1. 625 1. 375









450. 33
−1680. 7
1230. 3





1

−1680. 7
=





−0.999 98
3. 732 0
−2. 732









0.375 −0.625 0.375
−0.625 2. 375 −1. 625
0.375 −1. 625 1. 375









−0.999 98
3. 732 0
−2. 732





1

3. 732 0
=





−1. 000 00
3. 732
−2. 732





The scaling factors have certainly settled down.

1

λ+2
= 3. 732, Solution is: −1. 732 and an eigenvector is





−1. 000 00
3. 732
−2. 732



 .

How well does it work?




3 2 1
2 1 3
1 3 2









−1. 000 00
3. 732
−2. 732



 =





1. 732
−6. 464
4. 732





−1. 732





−1. 000 00
3. 732
−2. 732



 =





1. 732
−6. 463 8
4. 731 8





This is clearly very close. Of course −1.732 is very close to −
√
3. Now lets look for one near

2.








3 2 1
2 1 3
1 3 2



− 2





1 0 0
0 1 0
0 0 1









−1

=





−2. 25 0.75 1. 75
0.75 −0.25 −0.25
1. 75 −0.25 −1. 25









−2. 25 0.75 1. 75
0.75 −0.25 −0.25
1. 75 −0.25 −1. 25





7 



0
1
1



 =





6272. 3
−1680. 7
−4591. 7









−2. 25 0.75 1. 75
0.75 −0.25 −0.25
1. 75 −0.25 −1. 25









6272. 3
−1680. 7
−4591. 7





1

6272. 3
=





−3. 732 1
1.0

2. 732 1









−2. 25 0.75 1. 75
0.75 −0.25 −0.25
1. 75 −0.25 −1. 25









−3. 732 1
1.0

2. 732 1





1

−3. 732 1
=





−3. 732 1
1.0

2. 732 1





To several decimal places, the scaling factors are not changing.
1

λ−2
= −3. 732 1, Solution is: 1. 732 1. Thus an eigenvalue is about 1. 732 1 and an eigenvector

is





−3. 732 1
1.0

2. 732 1



 . How well does it work?
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



3 2 1
2 1 3
1 3 2









−3. 732 1
1.0

2. 732 1



 =





−6. 464 2
1. 732 1
4. 732 1





1. 732 1





−3. 732 1
1.0

2. 732 1



 =





−6. 464 4
1. 732 1
4. 732 3



 , pretty close.

7. Find the eigenvalues and eigenvectors of the matrix A =





3 2 1
2 5 3
1 3 2



 numerically. The exact

eigenvalues are 2, 4 +
√
15, 4−

√
15. Compare your numerical results with the exact values. Is

it much fun to compute the exact eigenvectors?

Characteristic polynomial: x3 − 10x2 + 17x − 2. When you graph it, you find that 2 is an
eigenvalue and there is also one near 0 and one near 8. First lets check the one for 2. The
graph suggests that this is an eigenvalue.




3 2 1
2 5 3
1 3 2



 − 2





1 0 0
0 1 0
0 0 1



 =





1 2 1
2 3 3
1 3 0



 . An eigenvector is





−3
1
1



 . This means

you would not want to use this vector as an initial gues in finding the eigenvalues and eigen-
vectors which go with the two other eigenvalues. First lets find the one near 0.




3 2 1
2 5 3
1 3 2





−1

=





0.5 −0.5 0.5
−0.5 2. 5 −3. 5
0.5 −3. 5 5. 5









0.5 −0.5 0.5
−0.5 2. 5 −3. 5
0.5 −3. 5 5. 5





7 



1
1
1



 =





65658.
−3. 856 1× 105

5. 825 8× 105









0.5 −0.5 0.5
−0.5 2. 5 −3. 5
0.5 −3. 5 5. 5









65658.
−3. 856 1× 105

5. 825 8× 105





1

5. 825 8×105
=





0.887 3
−5. 211 1
7. 873









0.5 −0.5 0.5
−0.5 2. 5 −3. 5
0.5 −3. 5 5. 5









0.887 3
−5. 211 1
7. 873





1

7. 873
=





0.887 30
−5. 211 1
7. 873 0





Thus the eigenvalue which is close to 0 is obtained by solving

1

λ
= 7. 873 0, Solution is: 0.127 02. The eigenvalue is





0.887 30
−5. 211 1
7. 873 0



 . How well does it work?





3 2 1
2 5 3
1 3 2









0.887 30
−5. 211 1
7. 873 0



 =





0.112 7
−0.661 9

1.0





0.127 02





0.887 30
−5. 211 1
7. 873 0



 =





0.112 7
−0.661 91

1.0



 , works well.

Now lets find the one which is close to 8.








3 2 1
2 5 3
1 3 2



− 8





1 0 0
0 1 0
0 0 1









−1

=





−1. 5 −2. 5 −1. 5
−2. 5 −4. 833 3 −2. 833 3
−1. 5 −2. 833 3 −1. 833 3









−1. 5 −2. 5 −1. 5
−2. 5 −4. 833 3 −2. 833 3
−1. 5 −2. 833 3 −1. 833 3





6 



1
0
0



 =





41213.
77190.
46447.




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



−1. 5 −2. 5 −1. 5
−2. 5 −4. 833 3 −2. 833 3
−1. 5 −2. 833 3 −1. 833 3









41213.
77190.
46447.





1

77190
=





−4. 203 5
−7. 873 0
−4. 737 3









−1. 5 −2. 5 −1. 5
−2. 5 −4. 833 3 −2. 833 3
−1. 5 −2. 833 3 −1. 833 3









−4. 203 5
−7. 873 0
−4. 737 3





1

−7. 873 0
=





−4. 203 4
−7. 872 9
−4. 737 3





The scaling factors are not changing by much.

1

λ−8
= −7. 872 9, Solution is: 7. 873 0. Then an eigenvector is





0.533 91
1.0

0.601 72



 . How well does it

work?




3 2 1

2 5 3

1 3 2









0.533 91
1.0

0.601 72



 =





4. 203 5
7. 873 0
4. 737 4





7. 873 0





0.533 91
1.0

0.601 72



 =





4. 203 5
7. 873
4. 737 3



 . Works well.

8. Find the eigenvalues and eigenvectors of the matrix A =





0 2 1

2 5 3

1 3 2



 numerically. We don’t

know the exact eigenvalues in this case. Check your answers by multiplying your numerically

computed eigenvectors by the matrix.

The characteristic polynomial is x3 − 7x2 − 4x + 1. Now you graph this to identify roughly

where the eigenvalues are.

x3 − 7x2 − 4x+ 1

There is one near −1, one near .25, and one near 7.5.









0 2 1

2 5 3

1 3 2



+





1 0 0

0 1 0

0 0 1









−1

=





3.0 −1.0 0

−1.0 0.666 67 −0.333 33
0 −0.333 33 0.666 67









3.0 −1.0 0

−1.0 0.666 67 −0.333 33
0 −0.333 33 0.666 67





6 



1

1

1



 =





867. 98
−325. 46
40. 116









3.0 −1.0 0

−1.0 0.666 67 −0.333 33
0 −0.333 33 0.666 67









867. 98
−325. 46
40. 116





1

867. 98
=





3. 375 0
−1. 265 4
0.155 80









3.0 −1.0 0

−1.0 0.666 67 −0.333 33
0 −0.333 33 0.666 67









3. 375 0
−1. 265 4
0.155 80





1

3. 375 0
=





3. 374 9
−1. 265 3
0.155 75





The scaling factors are not changing by much so

1

λ+1
= 3. 374 9, Solution is: −0.703 69. The eigenvectors is





3. 374 9
−1. 265 3
0.155 75



 . How well does it

work?




0 2 1

2 5 3

1 3 2









3. 374 9
−1. 265 3
0.155 75



 =





−2. 374 9
0.890 55
−0.109 5




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−0.703 69





3. 374 9
−1. 265 3
0.155 75



 =





−2. 374 9
0.890 38
−0.109 60



 This works pretty well. Of course more iterations

would likely result in a better answer.

Next try the one near .25









0 2 1
2 5 3
1 3 2



− .25





1 0 0
0 1 0
0 0 1









−1

=





−1. 629 6 −1. 185 2 2. 963 0
−1. 185 2 −3. 407 4 6. 518 5
2. 963 0 6. 518 5 −12. 296









−1. 629 6 −1. 185 2 2. 963 0
−1. 185 2 −3. 407 4 6. 518 5
2. 963 0 6. 518 5 −12. 296





8 



1
1
1





=





−2. 259 2× 108

−4. 877 7× 108

9. 328× 108









−1. 629 6 −1. 185 2 2. 963 0
−1. 185 2 −3. 407 4 6. 518 5
2. 963 0 6. 518 5 −12. 296









−2. 259 2× 108

−4. 877 7× 108

9. 328× 108





1

9. 328×108

=





3. 977 4
8. 587 3
−16. 422









−1. 629 6 −1. 185 2 2. 963 0
−1. 185 2 −3. 407 4 6. 518 5
2. 963 0 6. 518 5 −12. 296









3. 977 4
8. 587 3
−16. 422





1

−16. 422

=





3. 977 4
8. 587 3
−16. 422





The eigenvalue is the solution to 1

λ−.25
= −16. 422, Solution is: 0.189 11. The eigenvector is





3. 977 4
8. 587 3
−16. 422





1

−16. 422
=





−0.242 20
−0.522 91

1.0



 . How well does it work?





0 2 1
2 5 3
1 3 2









−0.242 20
−0.522 91

1.0



 =





−0.045 82
−0.098 95
0.189 07





0.189 11





−0.242 20
−0.522 91

1.0



 =





−4. 580 2× 10−2

−9. 888 8× 10−2

0.189 11



 . It works well.

Next lets find the eigenvector for the eigenvalue near 7.5








0 2 1
2 5 3
1 3 2



− 7.5





1 0 0
0 1 0
0 0 1









−1
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=





5. 428 6 16.0 9. 714 3
16.0 46.0 28.0

9. 714 3 28.0 16. 857









5. 428 6 16.0 9. 714 3
16.0 46.0 28.0

9. 714 3 28.0 16. 857





5 



1
1
1





=





6. 889 1× 108

1. 985 8× 109

1. 205 2× 109









5. 428 6 16.0 9. 714 3
16.0 46.0 28.0

9. 714 3 28.0 16. 857









0.346 92
1.0

0.606 91





=





23. 779
68. 544
41. 601









5. 428 6 16.0 9. 714 3
16.0 46.0 28.0

9. 714 3 28.0 16. 857









0.346 92
1.0

0.606 92





=





23. 779
68. 544
41. 601





The eigenvalue: 1

λ−7.5
= 68. 544, Solution is: 7. 514 6. The eigenvector is





0.346 92
1.0

0.606 92



 . How

well does it work?




0 2 1
2 5 3
1 3 2









0.346 92
1.0

0.606 92



 =





2. 606 9
7. 514 6
4. 560 8





7. 514 6





0.346 92
1.0

0.606 92



 =





2. 607 0
7. 514 6
4. 560 8



 . It worked well.

9. Find the eigenvalues and eigenvectors of the matrix A =





0 2 1
2 0 3
1 3 2



 numerically. We don’t

know the exact eigenvalues in this case. Check your answers by multiplying your numerically
computed eigenvectors by the matrix.

I am tired of going through the computations. Here is the answer.




0 2.0 1
2 0 3
1 3 2



, eigenvectors:





0.379 2
0.584 81
0.717 08



↔ 4. 975 4,





0.814 41
0.156 94
−0.558 66



↔ −0.300 56,





0.439 25
−0.795 85
0.416 76



↔ −2. 674 9

10. Consider the matrix A =





3 2 3
2 1 4
3 4 0



 and the vector (1, 1, 1)
T

. Estimate the distance be-

tween the Rayleigh quotient determined by this vector and some eigenvalue of A.
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Recall that there was a formula for this. Let

q =

(

1 1 1
)





3 2 3
2 1 4
3 4 0









1
1
1





3
=

22

3

Then there is an eigenvalue λ such that

∣

∣

∣

∣

λ− 22

3

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣





3 2 3
2 1 4
3 4 0









1
1
1



− 22

3





1
1
1





∣

∣

∣

∣

∣

∣

√
3

=
1

3

√
2

11. Consider the matrix A =





1 2 1
2 1 4
1 4 5



 and the vector (1, 1, 1)T . Estimate the distance be-

tween the Rayleigh quotient determined by this vector and some eigenvalue of A.

q =

(

1 1 1
)





1 2 1
2 1 4
1 4 5









1
1
1





3
= 7

Then

|λ− 7| ≤

∣

∣

∣

∣

∣

∣





1 2 1
2 1 4
1 4 5









1
1
1



− 7





1
1
1





∣

∣

∣

∣

∣

∣

√
3

=
√
6

12. Using Gerschgorin’s theorem, find upper and lower bounds for the eigenvalues ofA =





3 2 3
2 6 4
3 4 −3



 .

From the bottom line, a lower bound is −10 From the second line, an upper bound is 12.

13. The QR algorithm works very well on general matrices. Try the QR algorithm on the following
matrix which happens to have some complex eigenvalues.

A =





1 2 3
1 2 −1
−1 −1 1





Use the QR algorithm to get approximate eigenvalues and then use the shifted inverse power
method on one of these to get an approximate eigenvector for one of the complex eigenvalues.

The real parts of the eigenvalues are larger than −4. I will consider the matrix which comes
from adding 5I to the given matrix. Thus, consider





6 2 3
1 7 −1
−1 −1 6





(

1

2

√
2 − 1

2

√
2

1

2

√
2 1

2

√
2

)(

1
−1

)

=

( √
2
0

)

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



120 Exercises





1 0 0

0 1

2

√
2 − 1

2

√
2

0 1

2

√
2 1

2

√
2









6 2 3

1 7 −1
−1 −1 6









1 0 0

0 1

2

√
2 1

2

√
2

0 − 1

2

√
2 1

2

√
2





=





6 − 1

2

√
2 5

2

√
2√

2 15

2

1

2

0 1

2

11

2



 =





6.0 −0.707 11 3. 535 5
1. 414 2 7. 5 0.5

0 0.5 5. 5





This is the upper Hessenberg matrix which goes with A.





6.0 −0.707 11 3. 535 5
1. 414 2 7. 5 0.5

0 0.5 5. 5





35

=





3. 582 3× 1029 4. 290 6× 1029 6. 739 6× 1029

6. 190 5× 1030 7. 422 7× 1030 1. 165 9× 1031

1. 409 7× 1030 1. 690 3× 1030 2. 655 3× 1030





This has a QR factorization with Q =





5. 633 4× 10−2 −0.998 39 7. 287 3× 10−3

0.973 49 5. 330 5× 10−2 −0.222 43
0.221 68 1. 962 4× 10−2 0.974 92





Then

QT





6.0 −0.707 11 3. 535 5
1. 414 2 7. 5 0.5

0 0.5 5. 5



Q =





7. 695 7 −1. 281 6 0.230 07
1. 310 2× 10−4 5. 898 3 −3. 601 3
−1. 781 5× 10−5 0.310 73 5. 406 1





It is now clear that the eigenvalues are approximately those of

(

5. 898 3 −3. 601 3
0.310 73 5. 406 1

)

and 7. 695 7. That is,

5. 652 2+ 1. 028 8i, 5. 652 2− 1. 028 8i, 7. 695 7

Subtracting 5 gives the approximate eigenvalues for the original matrix,

0. 652 2+ 1. 028 8i, 0. 652 2− 1. 028 8i, 2. 695 7

Lets find the eigenvector which goes with the first of the above.









1 2 3

1 2 −1
−1 −1 1



− (0. 652 2+ 1. 028 8i)





1 0 0

0 1 0

0 0 1









−1

=





−4251. 5− 8395. 3i −16391.+ 3972. 6i −26508.+ 5426. 7i
1411. 0 + 4647. 5i 8687. 2− 554. 36i 13959.− 389. 59i
2431. 6− 3583.0i −5253. 6− 5712. 0i −8094. 1− 9459. 8i




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



−4251. 5− 8395. 3i −16391.+ 3972. 6i −26508.+ 5426. 7i
1411. 0 + 4647. 5i 8687. 2− 554. 36i 13959.− 389. 59i
2431. 6− 3583.0i −5253. 6− 5712. 0i −8094. 1− 9459. 8i





12 



1
1
1



 =





−3. 942 8× 1051 + 2. 747 1× 1051i
2. 249 7× 1051 − 1. 044 0× 1051i
−1. 984 8× 1051 − 9. 746 7× 1050i





Then the first approximation will be





−3. 942 8× 1051 + 2. 747 1× 1051i
2. 249 7× 1051 − 1. 044 0× 1051i
−1. 984 8× 1051 − 9. 746 7× 1050i





1

−3. 942 8× 1051 + 2. 747 1× 1051i

=





1.0
−0.508 31− 8. 937 5× 10−2i

0.222 94+ 0.402 53i









−4251. 5− 8395. 3i −16391.+ 3972. 6i −26508.+ 5426. 7i
1411. 0 + 4647. 5i 8687. 2− 554. 36i 13959.− 389. 59i
2431. 6− 3583.0i −5253. 6− 5712. 0i −8094. 1− 9459. 8i



 ·





1.0
−0.508 31− 8. 937 5× 10−2i

0.222 94+ 0.402 53i



 =





−3658. 8− 18410.0i
214. 5 + 9684. 9i
6594. 9− 5577. 1i





The next approximate eigenvector is





−3658. 8− 18410.0i
214. 5 + 9684. 9i
6594. 9− 5577. 1i





1

−3658. 8− 18410.0i

=





1.0
−0.508 31− 8. 936 9× 10−2i

0.222 94 + 0.402 53i





This didn’t change by much. In fact, it didn’t change at all. Thus the approximate eigenvalue
is obtained by solving

1

λ− (0. 652 2 + 1. 028 8i)
= −3658. 8− 18410.0i

Thus
λ = 0.652 19 + 1. 028 9i

and the approximate eigenvector is





1.0
−0.508 31− 8. 936 9× 10−2i

0.222 94+ 0.402 53i





Lets check it.





1 2 3
1 2 −1
−1 −1 1









1.0
−0.508 31− 8. 936 9× 10−2i

0.222 94 + 0.402 53i



 =





0.652 2 + 1. 028 9i
−0.239 56− 0.581 27i
−0.268 75+ 0.491 90i




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(0.652 19 + 1. 028 9i)





1.0
−0.508 31− 8. 936 9× 10−2i

0.222 94 + 0.402 53i



 =





0.652 19+ 1. 028 9i
−0.239 56− 0.581 29i
−0.268 76+ 0.491 91i





It worked very well. Thus you know the other eigenvalue for the other complex eigenvalue is




1.0
−0.508 31+ 8. 936 9× 10−2i

0.222 94− 0.402 53i





14. Use the QR algorithm to approximate the eigenvalues of the symmetric matrix




1 2 3
2 −8 1
3 1 0





Now consider the matrix. First lets find a Hessenburg matrix similar to it.
(

2 −1 1
3 1 2

)

=

(

2

13

√
13 − 3

13

√
13

3

13

√
13 2

13

√
13

)( √
13 1

13

√
13 8

13

√
13

0 5

13

√
13 1

13

√
13

)

and so

(

2

13

√
13 − 3

13

√
13

3

13

√
13 2

13

√
13

)T (

2 −1 1
3 1 2

)

=

( √
13 1

13

√
13 8

13

√
13

0 5

13

√
13 1

13

√
13

)

Then the similar matrix is





1 0 0

0 2

13

√
13 3

13

√
13

0 − 3

13

√
13 2

13

√
13









1 2 3
2 −1 1
3 1 2









1 0 0

0 2

13

√
13 3

13

√
13

0 − 3

13

√
13 2

13

√
13





T

=





1
√
13 0√

13 2 1
0 1 −1





Note how it also placed a 0 opposite the 0 on the bottom. This must happen because the given
matrix was symmetric. Now we will use this new Hessenburg matrix with the algorithm.




1
√
13 0√

13 2 1
0 1 −1





9

=





1. 216 3× 106 1. 430 6× 106 2. 284 4× 105

1. 430 6× 106 1. 676 4× 106 2. 700 6× 105

2. 284 4× 105 2. 700 6× 105 42601.





Now it is time to take the QR factorization of this. I am using a computer to do this of course.




1. 216 3× 106 1. 430 6× 106 2. 284 4× 105

1. 430 6× 106 1. 676 4× 106 2. 700 6× 105

2. 284 4× 105 2. 700 6× 105 42601.





=





0.643 00 0.653 69 0.399 06
0.756 29 −0.624 11 −0.196 26
0.120 76 0.428 00 −0.895 68



 ·





1. 891 6× 106 2. 220 3× 106 3. 562 7× 105

0 4492. 2 −985. 67
0 0 2. 806 8




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Then from the first part of this problem,

A9 =





0.643 00 0.653 69 0.399 06
0.756 29 −0.624 11 −0.196 26
0.120 76 0.428 00 −0.895 68





T




1.0 3. 605 6 0
3. 605 6 2.0 1.0

0 1.0 −1.0



 ·





0.643 00 0.653 69 0.399 06
0.756 29 −0.624 11 −0.196 26
0.120 76 0.428 00 −0.895 68



 =

=





5. 232 2 8. 540 3× 10−3 −2. 914 1× 10−5

8. 540 3× 10−3 −2. 453 3. 645 2× 10−3

−2. 914 1× 10−5 3. 645 2× 10−3 −0.779 16





The eigenvalues are close to the eigenvalues of the matrix





5. 232 2 0 0
0 −2. 453 0
0 0 −0.779 16





In fact, the given matrix is close to this diagonal matrix. Of course you could get closer if
you did some more iterations. You could also use the shifted inverse power method to find the
eigenvectors and to approximate the eigenvalues further if you want, but there are other ways
which I will not go into here.

15. Try to find the eigenvalues of the matrix





3 3 1
−2 −2 −1
0 1 0



 using the QR algorithm. It has

eigenvalues 1, i,−i. You will see the algorithm won’t work well.

To see that the method will not work well, consider the powers of this matrix.




3 3 1
−2 −2 −1
0 1 0





2

=





3 4 0
−2 −3 0
−2 −2 −1









3 3 1
−2 −2 −1
0 1 0





3

=





1 1 −1
0 0 1
−2 −3 0









3 3 1
−2 −2 −1
0 1 0





4

=





1 0 0
0 1 0
0 0 1





Thus the powers of the matrix will repeat forever. Therefore, you cannot expect things to
get small and be able to find the eigenvalues by looking at those of a block upper triangular
matrix which has very small entries below the block diagonal. Recall that, in terms of size of
the entries, you can at least theoretically consider the QR factorization of Ak and then look
at Q∗AQ however, not much can happen given the fact that there are only finitely many Ak.
The problem here is that there is no gap between the size of the eigenvalues. The matrix has
eigenvalues equal to i,−i and 1. To produce a situation in which this unfortunate situation will
not occur, simply add a multiple of the identity to the matrix and use the modified one. This
is always a reasonable idea. You can identify an interval, using Gerschgorin’s theorem which
will contain all the eigenvalues of the matrix. Then when you add a large enough multiple of
the identity, the result will have all positive real parts for the eigenvalues. If you do this to
this matrix, the problem goes away. The idea is to produce gaps between the absolute values
of the eigenvalues.
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B.17 Exercises 16.2

1. Prove the Euclidean algorithm: If m,n are positive integers, then there exist integers q, r ≥ 0
such that r < m and

n = qm+ r

Hint: You might try considering

S ≡ {n− km : k ∈ N and n− km < 0}

and picking the smallest integer in S or something like this.

The hint is a good suggestion. Pick the first thing in S. By the Archimedean property, S 6= ∅.
That is km > n for all k sufficiently large. Call this first thing q + 1. Thus n− (q + 1)m < 0
but n− qm ≥ 0. Then

n− qm < m

and so
0 ≤ r ≡ n− qm < m.

2. ↑The greatest common divisor of two positive integers m,n, denoted as q is a positive number
which divides both m and n and if p is any other positive number which divides both m,n,
then p divides q. Recall what it means for p to divide q. It means that q = pk for some integer
k. Show that the greatest common divisor of m,n is the smallest positive integer in the set S

S ≡ {xm+ yn : x, y ∈ Z and xm+ yn > 0}

Two positive integers are called relatively prime if their greatest common divisor is 1.

First note that either m or −m is in S so S is a nonempty set of positive integers. By well
ordering, there is a smallest element of S, called p = x0m+ y0n. Either p divides m or it does
not. If p does not divide m, then by the above problem,

m = pq + r

where 0 < r < p. Thus m = (x0m+ y0n) q + r and so, solving for r,

r = m (1− x0) + (−y0q)n ∈ S.

However, this is a contradiction because p was the smallest element of S. Thus p|m. Similarly
p|n.Now suppose q divides both m and n. Then m = qx and n = qy for integers, x and y.
Therefore,

p = mx0 + ny0 = x0qx+ y0qy = q (x0x+ y0y)

showing q|p. Therefore, p = (m,n) .

3. ↑A positive integer larger than 1 is called a prime number if the only positive numbers which
divide it are 1 and itself. Thus 2,3,5,7, etc. are prime numbers. If m is a positive integer and
p does not divide m where p is a prime number, show that p and m are relatively prime.

Suppose r is the greatest common divisor of p and m. Then if r 6= 1, it must equal p because
it must divide p. Hence there exist integers x, y such that

p = xp+ ym

which requires that p must divide m which is assumed not to happen. Hence r = 1 and so the
two numbers are relatively prime.
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4. ↑There are lots of fields. This will give an example of a finite field. Let Z denote the set of
integers. Thus Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · ·}. Also let p be a prime number. We will say
that two integers, a, b are equivalent and write a ∼ b if a− b is divisible by p. Thus they are
equivalent if a − b = px for some integer x. First show that a ∼ a. Next show that if a ∼ b
then b ∼ a. Finally show that if a ∼ b and b ∼ c then a ∼ c. For a an integer, denote by [a] the
set of all integers which is equivalent to a, the equivalence class of a. Show first that is suffices
to consider only [a] for a = 0, 1, 2, · · · , p− 1 and that for 0 ≤ a < b ≤ p− 1, [a] 6= [b]. That is,
[a] = [r] where r ∈ {0, 1, 2, · · · , p− 1}. Thus there are exactly p of these equivalence classes.
Hint: Recall the Euclidean algorithm. For a > 0, a = mp + r where r < p. Next define the
following operations.

[a] + [b] ≡ [a+ b]

[a] [b] ≡ [ab]

Show these operations are well defined. That is, if [a] = [a′] and [b] = [b′] , then [a] + [b] =
[a′] + [b′] with a similar conclusion holding for multiplication. Thus for addition you need to
verify [a+ b] = [a′ + b′] and for multiplication you need to verify [ab] = [a′b′]. For example,
if p = 5 you have [3] = [8] and [2] = [7] . Is [2× 3] = [8× 7]? Is [2 + 3] = [8 + 7]? Clearly so
in this example because when you subtract, the result is divisible by 5. So why is this so in
general? Now verify that {[0] , [1] , · · · , [p− 1]} with these operations is a Field. This is called
the integers modulo a prime and is written Zp. Since there are infinitely many primes p, it
follows there are infinitely many of these finite fields. Hint: Most of the axioms are easy once
you have shown the operations are well defined. The only two which are tricky are the ones
which give the existence of the additive inverse and the multiplicative inverse. Of these, the
first is not hard. − [x] = [−x]. Since p is prime, there exist integers x, y such that 1 = px+ ky
and so 1− ky = px which says 1 ∼ ky and so [1] = [ky] . Now you finish the argument. What
is the multiplicative identity in this collection of equivalence classes?

The only substantive issue is why Zp is a field. Let [x] ∈ Zp where [x] 6= [0]. Thus x is not a
multiple of p. Then from the above problem, x and p are relatively prime. Hence from another
of the above problems, there exist integers a, b such that

1 = ap+ bx

Then
[1− bx] = [ap] = 0

and it follows that
[b] [x] = [1]

so [b] = [x]
−1

.

B.18 Exercises 16.4

1. Let M =
{

u = (u1, u2, u3, u4) ∈ R4 : |u1| ≤ 4
}

. Is M a subspace? Explain.

No. (1, 0, 0, 0) ∈M but 10 (1, 0, 0, 0) /∈M.

2. Let M =
{

u = (u1, u2, u3, u4) ∈ R4 : sin (u1) = 1
}

. Is M a subspace? Explain.

absolutely not. Let u =
(

π

2
, 0, 0, 0

)

. Then 2u /∈M although u ∈M .

3. If you have 5 vectors in F5 and the vectors are linearly independent, can it always be concluded
they span F

5? Explain.

If not, you could add in a vector not in their span and obtain 6 vectors which are linearly
independent. This cannot occur thanks to the exchange theorem.
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4. If you have 6 vectors in F5, is it possible they are linearly independent? Explain.

No because there exists a spanning set of 5 vectors. Note that it doesn’t matter what F is
here.

5. Show in any vector space, 0 is unique.

Say 0
′ is another one. Then 0 = 0+ 0

′ = 0
′. This happens from the definition of what it

means for a vector to be an additive identity.

6. ↑In any vector space, show that if x+ y = 0, then y = −x.
Say x+ y = 0. Then −x = −x+ (x+ y) = (−x+ x) + y = 0+ y = y. If it acts like the
additive inverse, it is the additive inverse.

7. ↑Show that in any vector space, 0x = 0. That is, the scalar 0 times the vector x gives the
vector 0.

0x = (0 + 0)x = 0x+ 0x. Now add −0x to both sides to conclude that 0x = 0.

8. ↑Show that in any vector space, (−1)x = −x.
Lets show (−1)x acts like the additive inverse. x+ (−1)x =(1 + (−1))x = 0x = 0 from one
of the above problems. Hence (−1)x =− x.

9. Let X be a vector space and suppose {x1, · · · ,xk} is a set of vectors from X. Show that 0 is
in span (x1, · · · ,xk) .

Pick any vector, xi. Then 0xi is in the span, but this was shown to be 0 above.

10. Let X consist of the real valued functions which are defined on an interval [a, b] . For f, g ∈
X, f + g is the name of the function which satisfies (f + g) (x) = f (x) + g (x) and for α a
real number, (αf) (x) ≡ α (f (x)). Show this is a vector space with field of scalars equal to R.
Also explain why it cannot possibly be finite dimensional.

It doesn’t matter where the functions have their values provided it is some real vector space.
The axioms of a vector space are all routine because they hold for a vector space. The only
thing maybe not completely obvious is the assertions about the things which are supposed to
exist. 0 would be the zero function which sends everything to 0. This is an additive identity.
Now if f is a function, −f (x) ≡ (−f (x)). Then

(f + (−f)) (x) ≡ f (x) + (−f) (x) ≡ f (x) + (−f (x)) = 0

Hence f +−f = 0.

For each x ∈ [a, b] , let fx (x) = 1 and fx (y) = 0 if y 6= x. Then these vectors are obviously
linearly independent.

11. Let S be a nonempty set and let V denote the set of all functions which are defined on S and
have values in W a vector space having field of scalars F. Also define vector addition according
to the usual rule, (f + g) (s) ≡ f (s) + g (s) and scalar multiplication by (αf) (s) ≡ αf (s).
Show that V is a vector space with field of scalars F.

This is no different than the above. You simply understand that the vector space has the same
field of scalars as the space of functions.

12. Verify that any field F is a vector space with field of scalars F. However, show that R is a
vector space with field of scalars Q.

A field also has multiplication. However, you can consider the elements of the field as vectors
and then it satisfies all the vector space axioms. When you multiply a number (vector) in R
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by a scalar in Q you get something in R. All the axioms for a vector space are now obvious.
For example, if α ∈ Q and x, y ∈ R,

α (x+ y) = αx+ αy

from the distributive law on R.

13. Let F be a field and consider functions defined on {1, 2, · · · , n} having values in F. Explain
how, if V is the set of all such functions, V can be considered as Fn.

Simply let f (i) be the ith component of a vector x ∈ Fn. Thus a typical thing in Fn is
(f (1) , · · · , f (n)).

14. Let V be the set of all functions defined on N ≡{1, 2, · · · } having values in a field F such
that vector addition and scalar multiplication are defined by (f + g) (s) ≡ f (s) + g (s) and
(αf) (s) ≡ αf (s) respectively, for f ,g ∈ V and α ∈ F. Explain how this is a vector space and
show that for ei given by

ei (k) ≡
{

1 if i = k
0 if i 6= k

,

the vectors {ek}∞k=1
are linearly independent.

Say for some n,
∑

n

k=1
ckek = 0, the zero function. Then pick i,

0 =

n
∑

k=1

ckek (i) = ciei (i) = ci

Since i was arbitrary, this shows these vectors are linearly independent.

15. Suppose, in the context of Problem 10 you have smooth functions {y1, y2, · · · , yn} (all deriva-
tives exist) defined on an interval [a, b] . Then the Wronskian of these functions is the deter-
minant

W (y1, · · · , yn) (x) = det











y1 (x) · · · yn (x)
y′
1
(x) · · · y′

n
(x)

...
...

y
(n−1)

1
(x) · · · y

(n−1)

n (x)











Show that if W (y1, · · · , yn) (x) 6= 0 for some x, then the functions are linearly independent.

Say
n
∑

k=1

ckyk = 0

Then taking derivatives you have

n
∑

k=1

cky
(j)

k
= 0, j = 0, 1, 2 · · · , n− 1

This must hold when each equation is evaluated at x where you can pick the x at which the
above determinant is nonzero. Therefore, this is a system of n equations in n variables, the ci
and the coefficient matrix is invertible. Therefore, each ci = 0.

16. Give an example of two functions, y1, y2 defined on [−1, 1] such that W (y1, y2) (x) = 0 for all
x ∈ [−1, 1] and yet {y1, y2} is linearly independent.

Let y1 (x) = x2 and let y2 (x) = x |x| . Suppose c1y1 + c2y2 = 0 Then you could consider
evaluating at 1 and get

c1 + c2 = 0
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and then at −1 and get
c1 − c2 = 0

then it follows that c1 = c2 = 0. Thus, these are linearly independent. However, if x > 0,

W =

∣

∣

∣

∣

x2 x2

2x 2x

∣

∣

∣

∣

= 0

and if x < 0

W =

∣

∣

∣

∣

x2 −x2

2x −2x

∣

∣

∣

∣

= 0

Also, W = 0 if x = 0 because at this point, W =

∣

∣

∣

∣

0 0
0 0

∣

∣

∣

∣

= 0.

17. Let the vectors be polynomials of degree no more than 3. Show that with the usual definitions
of scalar multiplication and addition wherein, for p (x) a polynomial, (αp) (x) = αp (x) and for
p, q polynomials (p+ q) (x) ≡ p (x) + q (x) , this is a vector space.

This is just a subspace of the vector space of functions because it is closed with respect to
vector addition and scalar multiplication. Hence this is a vector space.

18. In the previous problem show that a basis for the vector space is
{

1, x, x2, x3
}

.

This is really easy if you take the Wronskian of these functions.

det









1 x x2 x3

0 1 2x 3x2

0 0 2 6x
0 0 0 6









6= 0.

See Problem 15 above.

19. Let V be the polynomials of degree no more than 3. Determine which of the following are
bases for this vector space.

(a)
{

x+ 1, x3 + x2 + 2x, x2 + x, x3 + x2 + x
}

Lets look at the Wronskian of these functions. If it is nonzero somewhere, then these are
linearly independent and are therefore a basis because there are four of them.

det









1 + x x3 + x2 + 2x x2 + x x3 + x2 + x
1 3x2 + 2x+ 2 2x+ 1 3x2 + 2x+ 1
0 6x+ 2 2 6x+ 2
0 6 0 6









Lets plug in x = 0 and see what happens. You only need to have it be nonzero at one
point.

det









1 0 0 0
1 2 1 1
0 2 2 2
0 6 0 6









= 12 6= 0

so these are linearly independent.

(b)
{

x3 + 1, x2 + x, 2x3 + x2, 2x3 − x2 − 3x+ 1
}

Suppose

c1
(

x3 + 1
)

+ c2
(

x2 + x
)

+ c3
(

2x3 + x2
)

+ c4
(

2x3 − x2 − 3x+ 1
)

= 0
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Then combine the terms according to power of x.

(c1 + 2c3 + 2c4)x
3 + (c2 + c3 − c4)x2 + (c2 − 3c4)x+ (c1 + c4) = 0

Is there a non zero solution to the system

c1 + 2c3 + 2c4 = 0
c2 + c3 − c4 = 0
c2 − 3c4 = 0
c1 + c4 = 0

, Solution is: [c1 = 0, c2 = 0, c3 = 0, c4 = 0] Therefore, these are lin-

early independent.

20. In the context of the above problem, consider polynomials

{

aix
3 + bix

2 + cix+ di, i = 1, 2, 3, 4
}

Show that this collection of polynomials is linearly independent on an interval [a, b] if and only
if









a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4









is an invertible matrix.

Let pi (x) denote the i
th of these polynomials. Suppose

∑

i
Cipi (x) = 0. Then collecting terms

according to the exponent of x, you need to have

C1a1 + C2a2 + C3a3 + C4a4 = 0

C1b1 + C2b2 + C3b3 + C4b4 = 0

C1c1 + C2c2 + C3c3 + C4c4 = 0

C1d1 + C2d2 + C3d3 + C4d4 = 0

The matrix of coefficients is just the transpose of the above matrix. There exists a non trivial
solution if and only if the determinant of this matrix equals 0.

21. Let the field of scalars be Q, the rational numbers and let the vectors be of the form a+ b
√
2

where a, b are rational numbers. Show that this collection of vectors is a vector space with
field of scalars Q and give a basis for this vector space.

This is obvious because when you add two of these you get one and when you multiply one of
these by a scalar, you get another one. A basis is

{

1,
√
2
}

. By definition, the span of these

gives the collection of vectors. Are they independent? Say a+ b
√
2 = 0 where a, b are rational

numbers. If a 6= 0, then b
√
2 = −a which can’t happen since a is rational. If b 6= 0, then

−a = b
√
2 which again can’t happen because on the left is a rational number and on the right

is an irrational. Hence both a, b = 0 and so this is a basis.

22. Suppose V is a finite dimensional vector space. Based on the exchange theorem above, it was
shown that any two bases have the same number of vectors in them. Give a different proof of
this fact using the earlier material in the book. Hint: Suppose {x1, · · · ,xn

} and {y1, · · · ,ym
}

are two bases with m < n. Then define

φ : Fn → V, ψ : Fm → V

by

φ (a) ≡
n
∑

k=1

akxk, ψ (b) ≡
m
∑

j=1

bjyj
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Consider the linear transformation, ψ−1 ◦ φ. Argue it is a one to one and onto mapping from
Fn to Fm. Now consider a matrix of this linear transformation and its row reduced echelon
form.

Since both of these are bases, both ψ and φ are one to one and onto. Therefore, the given
linear transformation is also one to one and onto. It has a matrix A which has more columns
than rows such that multiplication by A has the same effect as doing ψ−1 ◦ φ. However, the
augmented matrix (A|0) has free variables because there are more columns than rows for A.
Hence A cannot be one to one. Therefore, ψ−1 ◦ φ also must fail to be one to one. This is a
contradiction.

23. This and the following problems will present most of a differential equations course. To begin
with, consider the scalar initial value problem

y′ = ay, y (t0) = y0

When a is real, show the unique solution to this problem is y = y0e
a(t−t0). Next suppose

y′ = (a+ ib) y, y (t0) = y0 (2.2)

where y (t) = u (t) + iv (t) . Show there exists a unique solution and it is

y (t) = y0e
a(t−t0) (cos b (t− t0) + i sin b (t− t0))

≡ e(a+ib)(t−t0)y0. (2.3)

Next show that for a real or complex there exists a unique solution to the initial value problem

y′ = ay + f, y (t0) = y0

and it is given by

y (t) = ea(t−t0)y0 + eat
∫

t

t0

e−asf (s) ds.

Consider the first part. First you can verify that y (t) = y0e
a(t−t0) works using elementary

calculus. Why is it the only one which does so? Suppose y1 (t) is a solution. Then y (t)−y1 (t) =
z (t) solves the initial value problem

z′ (t) = az (t) , z (t0) = 0.

Thus z′ − az = 0. Multiply by e−at on both sides. By the chain rule,

e−at (z′ − az) = d

dt

(

e−atz (t)
)

= 0,

and so there is a constant C such that e−atz (t) = C. Since z (t0) = 0, this constant is 0, and
so z (t) = 0.

Next consider the second part involving the complex stuff. You can verify that

y0e
a(t−t0) (cos b (t− t0) + i sin b (t− t0)) = y (t)

does indeed solve the initial value problem from using elementary calculus. Now suppose you
have another solution y1 (t) . Then let z (t) = y (t)− y1 (t) . It solves

z′ = (a+ ib) z, z (t0) = 0

Now z (t) = u (t) + iv (t). It is also clear that z (t) ≡ u (t)− iv (t) solves the equation

z′ = (a− ib) z, z (t0) = 0
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Thus from the product rule which you can easily verify from the usual proof of the product
rule to be also true for complex valued functions,

d

dt
|z (t)|2 =

d

dt
(zz) = z′z + zz′ = (a+ ib) zz + z (a− ib) z

= 2a |z|2 , |z| (t0) = 0

Therefore, from the first part, |z| = 0 and so y = y1.

Note that this implies that
(

ei(a+ib)t
)

′

= (a+ ib) ei(a+ib)t where ei(a+ib)t is given above. Now
consider the last part. Sove y′ = ay + f, y (t0) = y0.

y′ − ay = f, y (t0) = y0

Multiply both sides by e−a(t−t0)

d

dt

(

e−a(t−t0)y
)

= e−a(t−t0)f (t)

Now integrate from t0 to t. Then

e−a(t−t0)y (t)− y0 =

∫

t

t0

e−a(s−t0)f (s) ds

Hence

y (t) = ea(t−t0)y0 + ea(t−t0)

∫

t

t0

e−a(s−t0)f (s) ds

= ea(t−t0)y0 + eat
∫

t

t0

e−asf (s) ds

24. Now consider A an n× n matrix. By Schur’s theorem there exists unitary Q such that

Q−1AQ = T

where T is upper triangular. Now consider the first order initial value problem

x
′ = Ax, x (t0) = x0.

Show there exists a unique solution to this first order system. Hint: Let y = Q−1
x and so

the system becomes
y
′ = Ty, y (t0) = Q−1

x0 (2.4)

Now letting y = (y1, · · · , yn)T , the bottom equation becomes

y′
n
= tnnyn, yn (t0) =

(

Q−1
x0

)

n

.

Then use the solution you get in this to get the solution to the initial value problem which
occurs one level up, namely

y′
n−1

= t(n−1)(n−1)yn−1 + t(n−1)nyn, yn−1 (t0) =
(

Q−1
x0

)

n−1

Continue doing this to obtain a unique solution to 2.4.

There isn’t much to do. Just see that you understand it. In the above problem, equations of
the above form are shown to have a unique solution and there is even a formula given. Thus
there is a unique solution to

y
′ = Ty, y (t0) = Q−1

x0
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Then let y = Q−1
x and plug this in. Thus

Q−1
x
′ = TQ−1

x, Q−1
x (t0) = Q−1

x0

Then
x
′ = QTQ−1

x = Ax, x (t0) = x0.

The solution is unique because of uniqueness of the solution for y. You can go backwards,
starting with x and defining y ≡ Q−1

x and then there is only one thing y can be and so x is
also unique.

25. Now suppose Φ (t) is an n× n matrix of the form

Φ (t) =
(

x1 (t) · · · xn (t)
)

(2.5)

where
x
′

k
(t) = Axk (t) .

Explain why
Φ′ (t) = AΦ (t)

if and only if Φ (t) is given in the form of 2.5. Also explain why if c ∈ Fn,

y (t) ≡ Φ (t) c

solves the equation
y
′ (t) = Ay (t) .

Suppose Φ′ (t) = AΦ (t) where Φ (t) is as described. This happens if and only if

Φ′ (t) ≡
(

x
′

1
(t) · · · x

′

n
(t)

)

= A
(

x1 (t) · · · xn (t)
)

=
(

Ax1 (t) · · · Axn (t)
)

from the way we multiply matrices. Which happens if and only if

x
′

k
= Axk

Say Φ′ (t) = AΦ (t) . Then consider

y (t) =
∑

k

ckxk (t) .

Then

y
′ (t) =

∑

k

ckx
′

k
(t) =

∑

k

ckAxk (t) = A

(

∑

k

ckxk (t)

)

= AΦ (t) c = Ay (t)

26. In the above problem, consider the question whether all solutions to

x
′ = Ax (2.6)

are obtained in the form Φ (t) c for some choice of c ∈ F
n. In other words, is the general

solution to this equation Φ (t) c for c ∈ Fn? Prove the following theorem using linear algebra.

Theorem B.18.1 Suppose Φ (t) is an n× n matrix which satisfies

Φ′ (t) = AΦ (t) .

Then the general solution to 2.6 is Φ (t) c if and only if Φ (t)−1
exists for some t. Furthermore,

if Φ′ (t) = AΦ (t) , then either Φ (t)
−1

exists for all t or Φ (t)
−1

never exists for any t.
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(det (Φ (t)) is called the Wronskian and this theorem is sometimes called the Wronskian alter-
native.)

Suppose first that Φ (t) c is the general solution. Why does Φ (t)
−1

necessarily exist? If for
some t0, Φ (t0) fails to have an inverse, then there exists c /∈ Φ (t0) (R

n). However, there exists
a unique a solution to the system

x
′ = Ax, x (t0) = c

from one of the above problems. It follows that x (t) 6= Φ(t)v for any choice of v because for
any v,

c = x (t0) 6= Φ(t0)v

Thus Φ (t) c for arbitrary choice of c fails to deliver the general solution as assumed.

Next suppose Φ (t0)
−1

exists for some t0 and let x (t) be any solution to the system of differen-

tial equations. Then let y (t) = Φ (t)Φ (t0)
−1

x (t0) . It follows y
′ = Ay and x

′ = Ax and also
that x (t0) = y (t0) so by the uniqueness part of the above problem, x = y. Hence Φ (t) c for
arbitrary c is the general solution. Consider det Φ (t) if it equals zero for any t0 then Φ (t) c
does not deliver the general solutions. If detΦ (t) is nonzero for any t then Φ (t) c delivers the
general solution. Either Φ (t) c does deliver the general solution or it does not. Therefore, you
cannot have two different values of t, t1, t2 such that detΦ (t1) = 0 but detΦ (t2) 6= 0. In other
words detΦ (t) either vanishes for all t or it vanishes for no t. Thus the inverse of Φ (t) either
exists for all t or for no t.

27. Let Φ′ (t) = AΦ (t) . Then Φ (t) is called a fundamental matrix if Φ (t)
−1

exists for all t. Show
there exists a unique solution to the equation

x
′ = Ax+ f , x (t0) = x0 (2.7)

and it is given by the formula

x (t) = Φ (t)Φ (t0)
−1

x0 +Φ(t)

∫

t

t0

Φ (s)−1
f (s) ds

Now these few problems have done virtually everything of significance in an entire undergrad-
uate differential equations course, illustrating the superiority of linear algebra. The above
formula is called the variation of constants formula.

It is easy to see that x given by the formula does solve the initial value problem. This is just
calculus.

x
′ (t) = Φ′ (t)Φ (t0)

−1
x0 +Φ′ (t)

∫

t

t0

Φ (s)
−1

f (s) ds+Φ(t)Φ (t)
−1

f (t)

= A

(

Φ (t)Φ (t0)
−1

x0 +Φ(t)

∫

t

t0

Φ (s)
−1

f (s) ds

)

+ f (t)

= Ax (t) + f (t)

As for the initial condition,

x (t0) = Φ (t0)Φ (t0)
−1

x0 +Φ(t0)

∫

t0

t0

Φ (s)
−1

f (s) ds = x0

It is also easy to see that this must be the solution. If you have two solutions, then let
u (t) = x1 (t)− x2 (t) and observe that

u
′ (t) = Au (t) , u (t0) = 0.

From the above problem, there is at most one solution to this initial value problem and it is
u = 0.
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28. Show there exists a special Φ such that Φ′ (t) = AΦ (t) , Φ (0) = I, and suppose Φ (t)
−1

exists
for all t. Show using uniqueness that

Φ (−t) = Φ (t)
−1

and that for all t, s ∈ R

Φ (t+ s) = Φ (t)Φ (s)

Explain why with this special Φ, the solution to 2.7 can be written as

x (t) = Φ (t− t0)x0 +

∫

t

t0

Φ (t− s) f (s) ds.

Hint: Let Φ (t) be such that the jth column is xj (t) where

x
′

j
= Axj , xj (0) = ej.

Use uniqueness as required.

You simply let Φ (t) =
(

x1 (t) · · · xn (t)
)

where

x
′

k
(t) = Axk (t) , xk (0) = ek

Then detΦ (0) = 1 and so detΦ (t) 6= 0 for any t. Furthermore, there is only one solution to
Φ′ (t) = AΦ (t) along with the initial condition Φ (0) = I and it is the one just described. This
follows from the uniqueness of the intial value problem x

′ = Ax, x (0) = x0 discussed earlier.
Now it is interesting to note that A and Φ (t) commute. To see this, consider

y (t) ≡ AΦ (t) c− Φ (t)Ac

When t = 0 y (0) = Ac−Ac = 0. What about its derivative?

y
′ (t) = AΦ′ (t) c− Φ′ (t)Ac = A2Φ (t) c−AΦ (t)Ac

= A (AΦ (t) c− Φ (t)Ac) = Ay (t)

By uniqueness, it follows that y (t) = 0. Thus these commute as claimed, since c is arbitrary.
Now from the product rule (the usual product rule holds when the functions are matrices by
the same proof given in calculus. )

(Φ (t)Φ (−t))′ = Φ′ (t)Φ (−t)− Φ (t)Φ′ (−t)
= AΦ (t)Φ (−t)− Φ (t)AΦ (−t)
= Φ (t)AΦ (−t)− Φ (t)AΦ (−t) = 0

Hence Φ (t)Φ (−t) must be a constant matrix since the derivative of each component of this
product equals 0. However, this constant can only equal I because when t = 0 the product is
I. Therefore, Φ (t)−1 = Φ(−t) . Next consider the claim that Φ (t+ s) = Φ (t)Φ (s) . Fix s and
let t vary.

Φ′ (t+ s)− Φ′ (t)Φ (s) = AΦ (t+ s)−AΦ (t) Φ (s) = A (Φ (t+ s)− Φ (t)Φ (s))

Now Φ (0 + s)−Φ (0)Φ (s) = Φ (s)−Φ (s) = 0 and so, by uniqueness, t→ Φ (t+ s)−Φ (t)Φ (s)
equals 0. The rest follows from the variation of constants formula derived earlier.

x (t) = Φ (t) Φ (0)−1
x0 +Φ(t)

∫

t

0

Φ (s)−1
f (s) ds

= Φ(t)x0 +Φ(t)

∫

t

0

Φ (−s) f (s)

= Φ (t)x0 +

∫

t

0

Φ (t)Φ (−s) f (s)

= Φ (t)x0 +

∫

t

0

Φ (t− s) f (s)

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



Exercises 135

The reason you can take Φ (t) inside the integral is that this is constant with respect to the
variable of integration. The jth entry of the product is

(

Φ (t)

∫

t

0

Φ (−s) f (s)
)

j

=
∑

k

Φ (t)
jk

∫

t

0

∑

i

Φ (−s)
ki
fi (s) ds

=
∑

k,i

∫

t

0

Φ (t)
jk

Φ (−s)
ki
fids

=
∑

i

∫

t

0

(Φ (t)Φ (−s))
ji
fids

=

∫

t

0

∑

i

(Φ (t)Φ (−s))
ji
fids

=

(
∫

t

0

Φ (t)Φ (−s) f (s) ds
)

j

You could also simply verify directly that this formula works much as was done earlier.

29. ∗Using the LindemannWeierstrass theorem show that if σ is an algebraic number sinσ, cosσ, lnσ,
and e are all transcendental. Hint: Observe, that

ee−1 + (−1) e0 = 0, 1eln(σ) + (−1)σe0 = 0,

1

2i
eiσ − 1

2i
e−iσ + (−1) sin (σ) e0 = 0.

The hint gives it away. Consider the claim about lnσ. The equation shown does hold from the
definition of lnσ. However, if lnσ were algebraic, then elnσ, e0 would be linearly dependent
with field of scalars equal to the algebraic numbers, contrary to the Lindemann Weierstrass
theorem. The other instances are similar. In the case of cosσ, you could use the identity

1

2
eiσ +

1

2
e−iσ − e0 cosσ = 0

contradicting independence of eiσ, e−iσ, e0.

B.19 Exercises 16.6

1. Verify that Examples 16.5.1 - 16.5.4 are each inner product spaces.

First consider Example 16.5.1. All of the axioms of the inner product are obvious except
one, the one which says that if 〈f, f〉 = 0 then f = 0. This one depends on continuity of the
functions. Suppose then that it is not true. In other words, 〈f, f〉 = 0 and yet f 6= 0. Then for
some x ∈ I, f (x) 6= 0. By continuity, there exists δ > 0 such that if y ∈ I ∩ (x− δ, x+ δ) ≡ Iδ,
then

|f (y)− f (x)| < |f (x)| /2
It follows that for y ∈ Iδ,

|f (y)| > |f (x)| − |f (x) /2| = |f (x)| /2.

Hence

〈f, f〉 ≥
∫

Iδ

|f (y)|2 p (x) dy ≥
(

|f (x)|2 /2
)

(length of Iδ) (min (p)) > 0,

a contradiction. Note that min p > 0 because p is a continuous function defined on a closed
and bounded interval and so it achieves its minimum by the extreme value theorem of calculus.
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Consider the next one. All of the axioms of the inner product are obvious for this one also,
except for the one which says that if 〈f, f〉 = 0, then f = 0. Suppose than that 〈f, f〉 = 0.
Then f equals 0 at n + 1 points of the interval and yet f is a polynomial of degree at most
n. Therefore, this would be a contradiction unless f is identically equal to 0 for all x. This is
because a polynomial of degree n has at most n zeros.

Consider the next example, inner product by decree. A generic vector of V will be denoted by
w =

∑

n

i=1
wivi. Now

〈w,u〉 ≡
n
∑

k=1

wkuk =
n
∑

k=1

wkuk ≡ 〈u,w〉

Letting a, b be scalars,

〈aw + bz,u〉 =
∑

k

(awk + bzk)uk = a
∑

k

wkuk + b
∑

k

zkuk

≡ a 〈w,u〉+ b 〈z,u〉

〈w,w〉 ≡
n
∑

k=1

wkwk =
n
∑

k=1

|wk|2 ≥ 0

The only way this can equal zero is to have each wk = 0. Since {vk} is a basis, this happens
if and only if w = 0. Thus the inner product by decree is an inner product.

The last example is obviously an inner product as noted earlier except for needing to verify
that the inner product makes sense; but this was done earlier.

2. In each of the examples 16.5.1 - 16.5.4 write the Cauchy Schwarz inequality.

In the first example, the Cauchy Schwarz inequality says

∣

∣

∣

∣

∫

I

f (x) g (x)p (x) dx

∣

∣

∣

∣

≤
(
∫

I

|f (x)|2 p (x) dx
)1/2(∫

I

|g (x)|2 p (x) dx
)1/2

In the next example, the Cauchy Schwarz inequality says

∣

∣

∣

∣

∣

n
∑

k=0

f (xk) g (xk)

∣

∣

∣

∣

∣

≤
(

n
∑

k=0

|f (xk)|2
)1/2(

n
∑

k=0

|g (xk)|2
)1/2

In the third example, the Cauchy Schwarz inequality says

∣

∣

∣

∣

∣

n
∑

k=1

ukwk

∣

∣

∣

∣

∣

≤
(

n
∑

k=1

|uk|2
)1/2(

n
∑

k=1

|wk|2
)1/2

where u =
∑

k
ukvk and w =

∑

k
wkvk.

In the last example,
∣

∣

∣

∣

∣

∞

∑

k=1

akbk

∣

∣

∣

∣

∣

≤
(

∞

∑

k=1

|ak|2
)1/2(

∞

∑

k=1

|bk|2
)1/2

3. Verify 16.16 and 16.17.

|αz|2 ≡ 〈αz,αz〉 = α 〈z,αz〉 = α〈αz, z〉 = αα 〈z, z〉 ≡ |α|2 |z|2

and so
|α| |z| = |αz|

It is clear |z| ≥ 0 because |z| = 〈z, z〉1/2 . Suppose |z| = 0. Then 〈z, z〉 = 0 and so, by the
axioms of the inner product, z = 0.
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4. Consider the Cauchy Schwarz inequality. Show that it still holds under the assumptions
〈u,v〉 = 〈v,u〉, 〈(au+ bv) , z〉 = a 〈u, z〉+ b 〈v, z〉 , and 〈u,u〉 ≥ 0. Thus it is not necessary to
say that 〈u,u〉 = 0 only if u = 0. It is enough to simply state that 〈u,u〉 ≥ 0.

This was all that was used in the proof. Look at the proof carefully and you will see this is
the case.

5. Consider the integers modulo a prime, Zp. This is a field of scalars. Now let the vector space
be (Zp)

n

where n ≥ p. Define now

〈z,w〉 ≡
n

∑

i=1

ziwi

Does this satisfy the axioms of an inner product? Does the Cauchy Schwarz inequality hold
for this 〈〉? Does the Cauchy Schwarz inequality even make any sense?

It might be the case that 〈z, z〉 = 0 and yet z 6= 0. Just let z =(z1, · · · , zn) where exactly p of
the zi equal 1 but the remaining are equal to 0. Then 〈z, z〉 would reduce to 0 in the integers
mod p. Another problem is the failure to have an order on Zp. Consider first Z2. Is 1 positive
or negative? If it is positive, then 1 + 1 would need to be positive. But 1 + 1 = 0 in this
case. If 1 is negative, then −1 is positive, but −1 is equal to 1. Thus 1 would be both positive
and negative. You can consider the general case where p > 2 also. Simply take a 6= 1. If a is
positive, then consider a, a2, a3 · · · . These would all have to be positive. However, eventually
a repeat will take place. Thus an = am m < n, and so am

(

ak − 1
)

= 0 where k = n −m.
Since am 6= 0, it follows that ak = 1 for a suitable k. It follows that the sequence of powers of
a must include each of {1, 2, · · · , p− 1} and all these would therefore, be positive. However,
1 + (p− 1) = 0 contradicting the assertion that Zp can be ordered. So what would you mean
by saying 〈z, z〉 ≥ 0? The Cauchy Schwarz inequality would not even apply.

6. If you only know that 〈u,u〉 ≥ 0 along with the other axioms of the inner product and if you
define |z| the same way, how do the conclusions of Theorem 16.5.7 change?

You lose the one which says that if |z| = 0 then z = 0. However, all the others are retained.

7. In an inner product space, an open ball is the set

B (x, r) ≡ {y : |y − x| < r} .

If z ∈ B (x, r) , show there exists δ > 0 such that B (z, δ) ⊆ B (x, r). In words, this says that
an open ball is open. Hint: This depends on the triangle inequality.

Let δ = r − |z− x| . Then if y ∈ B (z, δ) ,

|y − x| ≤ |y − z|+ |z− x| < δ + |z− x| = r − |z− x|+ |z− x| = r

and so B (z, δ) ⊆ B (x,r).

8. Let V be the real inner product space consisting of continuous functions defined on [−1, 1]
with the inner product given by

∫

1

−1

f (x) g (x) dx

Show that
{

1, x, x2
}

are linearly independent and find an orthonormal basis for the span of
these vectors.

Lets first find the Grammian.

G =







2
∫

1

−1
xdx

∫

1

−1
x2

∫ 1

−1
xdx

∫ 1

−1
x2dx

∫ 1

−1
x3

∫ 1

−1
x2

∫ 1

−1
x3

∫ 1

−1
x4dx






=





2 0 2

3

0 2

3
0

2

3
0 2

5




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Then the inverse is

G−1 =





9

8
0 − 15

8

0 3

2
0

− 15

8
0 45

8





Now let R =





a b c
0 d h
0 0 f



 . Solve





a b c
0 d h
0 0 f









a b c
0 d h
0 0 f





T

=





9

8
0 − 15

8

0 3

2
0

− 15

8
0 45

8





Thus




a2 + b2 + c2 bd+ ch cf
bd+ ch d2 + h2 hf

cf hf f2



 =





9

8
0 − 15

8

0 3

2
0

− 15

8
0 45

8





Hence a solution is

f =
3

4

√
2
√
5, h = 0, c = −1

4

√
2
√
5, d =

1

2

√
2
√
3, b = 0, a =

1

2

√
2

and so the orthonormal basis is

(

1 x x2
)





1

2

√
2 0 − 1

4

√
2
√
5

0 1

2

√
2
√
3 0

0 0 3

4

√
2
√
5





(

1

2

√
2 1

2

√
2
√
3x 3

4

√
2
√
5x2 − 1

4

√
2
√
5

)

9. A regular Sturm Liouville problem involves the differential equation for an unknown
function of x which is denoted here by y,

(p (x) y′)
′

+ (λq (x) + r (x)) y = 0, x ∈ [a, b]

and it is assumed that p (t) , q (t) > 0 for any t along with boundary conditions,

C1y (a) + C2y
′ (a) = 0

C3y (b) + C4y
′ (b) = 0

where
C2

1
+ C2

2
> 0, and C2

3
+ C2

4
> 0.

There is an immense theory connected to these important problems. The constant λ is called
an eigenvalue. Show that if y is a solution to the above problem corresponding to λ = λ1 and
if z is a solution corresponding to λ = λ2 6= λ1, then

∫

b

a

q (x) y (x) z (x) dx = 0. (2.8)

Let y go with λ and z go with µ.

z (p (x) y′)
′

+ (λq (x) + r (x)) yz = 0

y (p (x) z′)
′

+ (µq (x) + r (x)) zy = 0

Subtract.
z (p (x) y′)

′ − y (p (x) z′)
′

+ (λ− µ) q (x) yz = 0
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Now integrate from a to b. First note that

z (p (x) y′)
′ − y (p (x) z′)

′

=
d

dx
(p (x) y′z − p (x) z′y)

and so what you get is

p (b) y′ (b) z (b)− p (b) z′ (b) y (b)− (p (a) y′ (a) z (a)− p (a) z′ (a) y (a))

+ (λ− µ)

∫

b

a

q (x) y (x) z (x) dx = 0

Look at the stuff on the top line. From the assumptions on the boundary conditions,

C1y (a) + C2y
′ (a) = 0

C1z (a) + C2z
′ (a) = 0

and so
y (a) z′ (a)− y′ (a) z (a) = 0

Similarly,
y (b) z′ (b)− y′ (b) z (b) = 0

Hence, that stuff on the top line equals zero and so the orthogonality condition holds.

10. Using the above problem or standard techniques of calculus, show that

{√
2√
π
sin (nx)

}

∞

n=1

are orthonormal with respect to the inner product

〈f, g〉 =
∫

π

0

f (x) g (x) dx

Hint: If you want to use the above problem, show that sin (nx) is a solution to the boundary
value problem

y′′ + n2y = 0, y (0) = y (π) = 0

It is obvious that sin (nx) solves this boundary value problem. Those boundary conditions in
the above problem are implied by these. In fact,

1 sin 0 + (0) cos (0) = 0

1 sinπ + (0) cosπ = 0

Then it follows that
∫

π

0

sin (nx) sin (mx) dx = 0 unless n = m.

Now also
∫

π

0
sin2 (nx) dx = 1

2
π and so

{

√

2
√

π
sin (nx)

}

are orthonormal.

11. Find S5f (x) where f (x) = x on [−π, π] . Then graph both S5f (x) and f (x) if you have access
to a system which will do a good job of it.

Recall that this is the partial sum of the Fourier series.
∑

5

k=−5
bke

ikx where

bk =
1

2π

∫

π

−π

xe−ikxdx =
(−1)k
k

i
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Thus

S5f (x) =

5
∑

k=−5

(

(−1)k
k

i

)

eikx =

5
∑

k=−5

(−1)k
k

i (cos (kx) + i sin (kx))

=
5
∑

k=−5

(−1)k+1

k
sin (kx) =

5
∑

k=1

2 (−1)k+1

k
sin (kx)

12. Find S5f (x) where f (x) = |x| on [−π, π] . Then graph both S5f (x) and f (x) if you have
access to a system which will do a good job of it.

bk =
1

2π

∫

π

−π

|x| e−ikxdx = − 2

k2π

if k is odd and 0 if k is even. However, b0 = 1

2
π Thus the sum desired is

S5f (x) =

−1
∑

k=−5

− 1

k2π

(

1 + (−1)k+1
)

cos (kx) +

5
∑

k=1

− 1

k2π

(

1 + (−1)k+1
)

cos (kx)

+
1

2
π

since the sin terms cancel due to the fact that sin is odd. The above equals

1

2
π −

2
∑

k=0

4

(2k + 1)
2
π
cos ((2k + 1)x)

1

2
π −

∑

2

k=0

4

(2k+1)
2
π

cos ((2k + 1)x)
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13. Find S5f (x) where f (x) = x2 on [−π, π] . Then graph both S5f (x) and f (x) if you have
access to a system which will do a good job of it.

bk =
1

2π

∫

π

−π

x2e−kixdx =
2

k2
(−1)k

b0 =
1

2π

∫

π

−π

x2dx =
1

3
π2

Then the series is

S5f (x) =

5
∑

k=1

2

k2
(−1)k eikx +

−1
∑

k=−5

2

k2
(−1)k eikx +

π2

3

=

5
∑

k=1

4

k2
(−1)k cos (kx) + π2

3
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14. Let V be the set of real polynomials defined on [0, 1] which have degree at most 2. Make this
into a real inner product space by defining

〈f, g〉 ≡ f (0) g (0) + f (1/2) g (1/2) + f (1) g (1)

Find an orthonormal basis and explain why this is an inner product.

It was described more generally why this was an inner product in an earlier problem. To find
an orthonormal basis, consider a basis

{

1, x, x2
}

. Then the Grammian is




3 0 + 1/2 + 1 0 + 1/4 + 1
0 + 1/2 + 1 0 + 1/4 + 1 0 + (1/2) (1/4) + 1

0 + 1/4 + 1 0 + (1/2) (1/4) + 1 0 + (1/4)
2
+ 1





=





3 3

2

5

4
3

2

5

4

9

8
5

4

9

8

17

16





Now G−1 equals




1 −3 2
−3 26 −24
2 −24 24





Let R =





a b c
0 d h
0 0 f









a b c
0 d h
0 0 f









a b c
0 d h
0 0 f





T

=





a2 + b2 + c2 bd+ ch cf
bd+ ch d2 + h2 hf

cf hf f2





So you need to solve the following .




a2 + b2 + c2 bd+ ch cf
bd+ ch d2 + h2 hf

cf hf f2



 =





1 −3 2
−3 26 −24
2 −24 24





f = 2
√
6, h = −2

√
6, c =

1

6

√
6, d =

√
2, b = −1

2

√
2, a =

1

3

√
3

So the orthonormal basis is

(

1 x x2
)





1

3

√
3 − 1

2

√
2 1

6

√
6

0
√
2 −2

√
6

0 0 2
√
6





(

1

3

√
3
√
2x− 1

2

√
2 2

√
6x2 − 2

√
6x+ 1

6

√
6

)

15. Consider Rn with the following definition.

〈x,y〉 ≡
n

∑

i=1

xiyii

Does this define an inner product? If so, explain why and state the Cauchy Schwarz inequality
in terms of sums.

It obviously defines an inner product because it satisfies all the axioms of one. The Cauchy
Schwarz inequality says

∣

∣

∣

∣

∣

n
∑

i=1

xiyii

∣

∣

∣

∣

∣

≤
(

n
∑

i=1

x2

i
i

)1/2 (
n

∑

i=1

y2
i
i

)1/2

This is a fairly surprising inequality it seems to me.
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16. From the above, for f a piecewise continuous function,

Snf (x) =
1

2π

n
∑

k=−n

eikx
(
∫

π

−π

f (y) e−ikydy

)

.

Show this can be written in the form

Snf (x) =

∫

π

−π

f (y)Dn (x− y) dy

where

Dn (t) =
1

2π

n
∑

k=−n

eikt

This is called the Dirichlet kernel. Show that

Dn (t) =
1

2π

sin (n+ (1/2)) t

sin (t/2)

For V the vector space of piecewise continuous functions, define Sn : V → V by

Snf (x) =

∫

π

−π

f (y)Dn (x− y) dy.

Show that Sn is a linear transformation. (In fact, Snf is not just piecewise continuous but
infinitely differentiable. Why?) Explain why

∫

π

−π
Dn (t) dt = 1. Hint: To obtain the formula,

do the following.

ei(t/2)Dn (t) =
1

2π

n
∑

k=−n

ei(k+(1/2))t

ei(−t/2)Dn (t) =
1

2π

n
∑

k=−n

ei(k−(1/2))t

Change the variable of summation in the bottom sum and then subtract and solve for Dn (t).

Snf (x) =
1√
2π

n
∑

k=−n

eikx
(
∫

π

−π

f (y) e−ikydy

)

=
1

2π

∫

π

−π

f (y)

n
∑

k=−n

eik(x−y)dy.

Let Dn (t) be as described. Then the above equals

∫

π

−π

Dn (x− y) f (y)dy.

So now you want to find a formula for Dn (t). The hint is really good.

ei(t/2)Dn (t) =
1

2π

n
∑

k=−n

ei(k+(1/2))t

ei(−t/2)Dn (t) =
1

2π

n
∑

k=−n

ei(k−(1/2))t =
1

2π

n−1
∑

k=−(n+1)

ei(k+(1/2))t

Dn (t)
(

ei(t/2) − e−i(t/2)

)

=
1

2π

(

ei(n+(1/2))t − e−i(n+(1/2))t

)
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Dn (t) 2i sin (t/2) =
1

2π
2i sin

((

n+
1

2

)

t

)

Dn (t) =
1

2π

sin
(

t
(

n+ 1

2

))

sin
(

1

2
t
)

You know that t→ Dn (t) is periodic of period 2π. Therefore, if f (y) = 1,

Snf (x) =

∫

π

−π

Dn (x− y) dy =

∫

π

−π

Dn (t) dt

However, it follows directly from computation that Snf (x) = 1.

17. Let V be an inner product space and let U be a finite dimensional subspace with an orthonormal
basis {ui}ni=1

. If y ∈ V, show

|y|2 ≥
n

∑

k=1

|〈y,u
k
〉|2

Now suppose that {uk}∞k=1
is an orthonormal set of vectors of V . Explain why

lim
k→∞

〈y,u
k
〉 = 0.

When applied to functions, this is a special case of the Riemann Lebesgue lemma.

From Lemma 16.5.11 and Theorem 16.5.12
〈

y −
n

∑

k=1

〈y,u
k
〉uk,w

〉

= 0

for all w ∈ span ({ui}ni=1
) . Therefore,

|y|2 =

∣

∣

∣

∣

∣

y−
n

∑

k=1

〈y,u
k
〉uk +

n
∑

k=1

〈y,u
k
〉uk

∣

∣

∣

∣

∣

2

Now if 〈u,v〉 = 0, then you can see right away from the definition that

|u+ v|2 = |u|2 + |v|2

Applying this to u = y−
∑

n

k=1
〈y,u

k
〉uk, v =

∑

n

k=1
〈y,u

k
〉uk, the above equals

=

∣

∣

∣

∣

∣

y−
n

∑

k=1

〈y,u
k
〉uk

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

n
∑

k=1

〈y,u
k
〉uk

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

y−
n

∑

k=1

〈y,u
k
〉uk

∣

∣

∣

∣

∣

2

+

n
∑

k=1

|〈y,u
k
〉|2 ,

the last step following because of similar reasoning to the above and the assumption that the
uk are orthonormal. It follows the sum

∑

∞

k=1
|〈y,u

k
〉|2 converges and so limk→∞ 〈y,uk

〉 = 0
because if a series converges, then the kth term must converge to 0.

18. Let f be any piecewise continuous function which is bounded on [−π, π] . Show, using the
above problem, that

lim
n→∞

∫

π

−π

f (t) sin (nt) dt = lim
n→∞

∫

π

−π

f (t) cos (nt) dt = 0
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Let the inner product space consist of piecewise continuous bounded functions with the inner
product defined by

〈f, g〉 ≡
∫

π

−π

f (x) g (x)dx

Then, from the above problem and the fact shown earlier that
{

1
√

2π
eikx

}

k∈Z

form an or-

thonormal set of vectors in this inner product space, it follows that

lim
n→∞

〈

f, einx
〉

= 0

without loss of generality, assume that f has real values. Then the above limit reduces to
having both the real and imaginary parts converge to 0. This implies the thing which was
desired. Note also that if α ∈ [−1, 1] , then

lim
n→∞

∫

π

−π

f (t) sin ((n+ α) t) dt = lim
n→∞

∫

π

−π

f (t) [sin (nt) cosα+ cos (nt) sinα] dt = 0

19. ∗Let f be a function which is defined on (−π, π]. The 2π periodic extension is given by the
formula f (x+ 2π) = f (x) . In the rest of this problem, f will refer to this 2π periodic extension.
Assume that f is piecewise continuous, bounded, and also that the following limits exist

lim
y→0+

f (x+ y)− f (x+)

y
, lim

y→0+

f (x− y)− f (x+)

y

Here it is assumed that

f (x+) ≡ lim
h→0+

f (x+ h) , f (x−) ≡ lim
h→0+

f (x− h)

both exist at every point. The above conditions rule out functions where the slope taken
from either side becomes infinite. Justify the following assertions and eventually conclude that
under these very reasonable conditions

lim
n→∞

Snf (x) = (f (x+) + f (x−)) /2

the mid point of the jump. In words, the Fourier series converges to the midpoint of the jump
of the function.

Snf (x) =

∫

π

−π

f (x− y)Dn (y) dy

∣

∣

∣

∣

Snf (x)− f (x+) + f (x−)
2

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

π

−π

(

f (x− y)− f (x+) + f (x−)
2

)

Dn (y) dy

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

π

0

f (x− y)Dn (y)dy +

∫

π

0

f (x+ y)Dn (y) dy

−
∫

π

0

(f (x+) + f (x−))Dn (y) dy

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

π

0

(f (x− y)− f (x−))Dn (y) dy

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

π

0

(f (x+ y)− f (x+))Dn (y) dy

∣

∣

∣

∣

Now apply some trig. identities and use the result of Problem 18 to conclude that both of
these terms must converge to 0.
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From the definition of Dn, the top formula holds. Now observe that Dn is an even function.
Therefore, the formula equals

Snf (x) =

∫

π

0

f (x− y)Dn (y) dy +

∫ 0

−π

f (x− y)Dn (y) dy

=

∫

π

0

f (x− y)Dn (y) dy +

∫

π

0

f (x+ y)Dn (y) dy

=

∫

π

0

f (x+ y) + f (x− y)

2
2Dn (y)dy

Now note that
∫

π

0
2Dn (y) = 1 because

∫

π

−π
Dn (y) dy = 1 and Dn is even. Therefore,

∣

∣

∣

∣

Snf (x)− f (x+) + f (x−)
2

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

π

0

f (x+ y)− f (x+) + f (x− y)− f (x−)
2

2Dn (y) dy

∣

∣

∣

∣

From the formula for Dn (y) given earlier, this is dominated by an expression of the form

C

∣

∣

∣

∣

∫

π

0

f (x+ y)− f (x+) + f (x− y)− f (x−)
sin (y/2)

sin ((n+ 1/2) y) dy

∣

∣

∣

∣

for a suitable constant C. The above is equal to

C

∣

∣

∣

∣

∫

π

0

y

sin (y/2)

f (x+ y)− f (x+) + f (x− y)− f (x−)
y

sin ((n+ 1/2)y) dy

∣

∣

∣

∣

and the expression y

sin(y/2)
equals a bounded continuous function on [0, π] except at 0 where it

is undefined. This follows from elementary calculus. Therefore, changing the function at this
single point does not change the integral and so we can consider this as a continuous bounded
function defined on [0, π] . Also, from the assumptions on f,

y → f (x+ y)− f (x+) + f (x− y)− f (x−)
y

is equal to a piecewise continuous function on [0, π] except at the point 0. Therefore, the above
integral converges to 0 by the previous problem. This shows that the Fourier series generally
tries to converge to the midpoint of the jump.

20. Using the Fourier series obtained in Problem 11 and the result of Problem 19 above, find an
interesting formula by examining where the Fourier series converges when x = π/2. Of course
you can get many other interesting formulas in the same way. Hint: You should get

Snf (x) =

n
∑

k=1

2 (−1)k+1

k
sin (kx)

Let x = π/2. Then you must have

π

2
= lim

n→∞

n
∑

k=1

2 (−1)k+1

k
sin

(

k
π

2

)

= lim
n→∞

n
∑

k=1

2

2k − 1
sin

(

(2k − 1)
π

2

)

= lim
n→∞

n
∑

k=1

2

2k − 1
(−1)k+1

.
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Then, dividing by 2 you get

π

4
= lim

n→∞

n
∑

k=1

(−1)k+1

2k − 1

You could use x2 instead of x and get

lim
n→∞

n
∑

k=1

4

k2
(−1)k cos (kx) + π2

3
= x2

because the periodic extension of this function is continuous. Let x = 0

lim
n→∞

n
∑

k=1

4

k2
(−1)k +

π2

3
= 0

and so
π2

3
= lim

n→∞

n
∑

k=1

4

k2
(−1)k+1 ≡

∞

∑

k=1

4

k2
(−1)k+1

This is one of those calculus problems where you show it converges absolutely by the comparison
test with a p series. However, here is what it converges to.

21. Let V be an inner product space and let K be a convex subset of V . This means that if
x, z ∈ K, then the line segment x+ t (z− x) = (1− t)x+ tz is contained in K for all t ∈ [0, 1] .
Note that every subspace is a convex set. Let y ∈ V and let x ∈ K. Show that x is the closest
point to y out of all points in K if and only if for all w ∈ K,

Re 〈y − x,w − x〉 ≤ 0.

In Rn, a picture of the above situation where x is the closest point to y is as follows.

-y
K

w θ
y

x

The condition of the above variational inequality is that the angle θ shown in the picture is
larger than 90 degrees. Recall the geometric description of the dot product presented earlier.
See Page 41.

Consider for t ∈ [0, 1] the following.

|y − (x+ t (w− x))|2

where w ∈ K and x ∈ K. It equals

f (t) = |y − x|2 + t2 |w − x|2 − 2tRe 〈y − x,w − x〉

Suppose x is the point of K which is closest to y. Then f ′ (0) ≥ 0. However, f ′ (0) =
−2Re 〈y − x,w − x〉 . Therefore, if x is closest to y,

Re 〈y − x,w − x〉 ≤ 0.

Next suppose this condition holds. Then you have

|y − (x+ t (w − x))|2 ≥ |y − x|2 + t2 |w − x|2 ≥ |y − x|2

By convexity of K, a generic point of K is of the form x + t (w − x) for w ∈ K. Hence x is
the closest point.
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22. Show that in any inner product space the parallelogram identity holds.

|x+ y|2 + |x− y|2 = 2 |x|2 + 2 |y|2

Next show that in a real inner product space, the polarization identity holds.

〈x,y〉 = 1

4

(

|x+ y|2 − |x− y|2
)

.

This follows right away from the axioms of the inner product.

|x+ y|2 + |x− y|2 = |x|2 + |y|2 + 2Re 〈x,y〉
+ |x|2 + |y|2 − 2Re 〈x,y〉

= 2 |x|2 + 2 |y|2

Of course the same reasoning yields

1

4

(

|x+ y|2 − |x− y|2
)

=
1

4

(

|x|2 + |y|2 + 2 〈x,y〉 −
(

|x|2 + |y|2 − 2 〈x,y〉
))

= 〈x,y〉

23. ∗This problem is for those who know about Cauchy sequences and completeness of Fp and
about closed sets. Suppose K is a closed nonempty convex subset of a finite dimensional
subspace U of an inner product space V . Let y ∈ V. Then show there exists a unique point
x ∈ K which is closest to y. Hint: Let

λ = inf {|y − z| : z ∈ K}

Let {xn} be a minimizing sequence,

|y − x
n
| → λ.

Use the parallelogram identity in the above problem to show that {xn} is a Cauchy sequence.
Now let {uk}pk=1

be an orthonormal basis for U . Say

xn =

p
∑

k=1

cn
k
uk

Verify that for cn ≡
(

cn
1
, · · · , cn

p

)

∈ Fp

|xn − xm| = |cn − c
m|

Fp .

Now use completeness of Fp and the assumption that K is closed to get the existence of x ∈ K
such that |x− y| = λ.

The hint is pretty good. Let xk be a minimizing sequence. The connection between xk and
c
k ∈ Fk is obvious because the {uk} are orthonormal. That is,

|xn − xm| = |cn − c
m|

Fp .

Use the parallelogram identity.

∣

∣

∣

∣

y − x
k
− (y − x

m
)

2

∣

∣

∣

∣

2

+

∣

∣

∣

∣

y − x
k
+ (y − x

m
)

2

∣

∣

∣

∣

2

= 2

∣

∣

∣

∣

y − x
k

2

∣

∣

∣

∣

2

+ 2

∣

∣

∣

∣

y − x
m

2

∣

∣

∣

∣
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Hence

1

4
|xm − xk|2 =

1

2
|y − x

k
|2 + 1

2
|y − x

m
|2 −

∣

∣

∣

∣

y−xk + xm

2

∣

∣

∣

∣

2

≤ 1

2
|y − x

k
|2 + 1

2
|y − x

m
|2 − λ2

Now the right hand side converges to 0 since {xk} is a minimizing sequence. Therefore, {xk} is
a Cauchy sequence in U. Hence the sequence of component vectors

{

c
k

}

is a Cauchy sequence
in F

n and so it converges thanks to completeness of F. It follows that {xk} also must converge
to some x. Then since K is closed, it follows that x ∈ K. Hence

λ = |x− y| .

24. ∗Let K be a closed nonempty convex subset of a finite dimensional subspace U of a real inner
product space V . (It is true for complex ones also.) For x ∈ V, denote by Px the unique
closest point to x in K. Verify that P is Lipschitz continuous with Lipschitz constant 1,

|Px− Py| ≤ |x− y| .

Hint: Use Problem 21.

From the problem,

〈Px− Py,y − Py〉 ≤ 0

〈Py − Px,x− Px〉 ≤ 0

Thus
〈Px− Py,x− Px〉 ≥ 0

Hence
〈Px− Py,x− Px〉 − 〈Px− Py,y − Py〉 ≥ 0

and so
〈Px− Py,x− y − (Px− Py)〉 ≥ 0

|x− y| |Px− Py| ≥ 〈Px− Py,Px− Py〉 = |Px− Py|2

25. ∗ This problem is for people who know about compactness. It is an analysis problem. If
you have only had the usual undergraduate calculus course, don’t waste your time with this
problem. Suppose V is a finite dimensional normed linear space. Recall this means that there
exists a norm ‖·‖ defined on V as described above,

‖v‖ ≥ 0 equals 0 if and only if v = 0

‖v + u‖ ≤ ‖u‖+ ‖v‖ , ‖αv‖ = |α| ‖v‖ .
Let |·| denote the norm which comes from Example 16.5.3, the inner product by decree. Show
|·| and ‖·‖ are equivalent. That is, there exist constants δ,∆ > 0 such that for all x ∈ V,

δ |x| ≤ ‖x‖ ≤ ∆ |x| .

In explain why every two norms on a finite dimensional vector space must be equivalent in the
above sense.

Let {uk}nk=1
be a basis for V and if x ∈ V, let xi be the components of x relative to this basis.

Thus the xi are defined according to

∑

i

xiui = x
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Then since {ui} is an orthonormal basis by decree, it follows that

|x|2 =
∑

i

|xi|2 .

Now letting {xk} be a sequence of vectors of V let
{

x
k

}

denote the sequence of component
vectors in Fn. One direction is easy, saying that ‖x‖ ≤ ∆ |x| . If this is not so, then there exists
a sequence of vectors {xk} such that

‖xk‖ > k |xk|

dividing both sides by ‖xk‖ it can be assumed that 1 > k |xk| =
∣

∣x
k

∣

∣ . Hence x
k → 0 in F

k.
But from the triangle inequality,

‖xk‖ ≤
n
∑

i=1

xk

i
‖ui‖

Therefore, since limk→∞
xk

i
= 0, this is a contradiction to each ‖xk‖ = 1. It follows that there

exists ∆ such that for all x,
‖x‖ ≤ ∆ |x|

Now consider the other direction. If it is not true, then there exists a sequence {xk} such that

1

k
|xk| > ‖xk‖

Dividing both sides by |xk| , it can be assumed that |xk| =
∣

∣x
k

∣

∣ = 1. Hence, by compactness
of the closed unit ball in Fn, there exists a further subsequence, still denoted by k such
that x

k → a ∈ Fn and it also follows that |a|
Fn = 1. Also the above inequality implies

limk→∞
‖xk‖ = 0. Therefore,

n
∑

j=1

ajuj = lim
k→∞

n
∑

j=1

xk

j
uj = lim

k→∞

xk = 0

which is a contradiction to the uj being linearly independent. Therefore, there exists δ > 0
such that for all x,

δ |x| ≤ ‖x‖ .
Now if you have any other norm on this finite dimensional vector space, say |||·||| , then from
what was just shown, there exist scalars δi and ∆i all positive, such that

δ1 |x| ≤ ‖x‖ ≤ ∆1 |x|
δ2 |x| ≤ |||x||| ≤ ∆2 |x|

It follows that

|||x||| ≤ ∆2

δ1
‖x‖ ≤ ∆2∆1

δ1
|x| ≤ ∆2∆1

δ1δ2
|||x||| .

Hence
δ1
∆2

|||x||| ≤ ‖x‖ ≤ ∆1

δ2
|||x||| .

In other words, any two norms on a finite dimensional vector space are equivalent norms.
What this means is that every consideration which depends on analysis or topology is exactly
the same for any two norms. What might change are geometric properties of the norms.
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B.20 Exercises 17.6

1. Find the matrix for the linear transformation which rotates every vector in R2 through an
angle of π/3.
(

1

2
− 1

2

√
3

1

2

√
3 1

2

)

2. Find the matrix for the linear transformation which rotates every vector in R2 through an
angle of π/4.
(

1

2

√
2 − 1

2

√
2

1

2

√
2 1

2

√
2

)

3. Find the matrix for the linear transformation which rotates every vector in R2 through an
angle of π/12. Hint: Note that π/12 = π/3− π/4.
(

1

2
− 1

2

√
3

1

2

√
3 1

2

)(

1

2

√
2 − 1

2

√
2

− 1

2

√
2 1

2

√
2

)

=

(

1

4

√
2
√
3 + 1

4

√
2 − 1

4

√
2
√
3− 1

4

√
2

1

4

√
2
√
3− 1

4

√
2 1

4

√
2− 1

4

√
2
√
3

)

4. Find the matrix for the linear transformation which rotates every vector in R2 through an
angle of 2π/3 and then reflects across the x axis.
(

1 0
0 −1

)(

cos
(

2π

3

)

− sin
(

2π

3

)

sin
(

2π

3

)

cos
(

2π

3

)

)

=

(

− 1

2
− 1

2

√
3

− 1

2

√
3 1

2

)

5. Find the matrix for the linear transformation which rotates every vector in R2 through an
angle of π/3 and then reflects across the y axis.
(

−1 0
0 1

)(

cos
(

π

3

)

− sin
(

π

3

)

sin
(

π

3

)

cos
(

π

3

)

)

=

(

− 1

2

1

2

√
3

1

2

√
3 1

2

)

6. Find the matrix for the linear transformation which rotates every vector in R
2 through an

angle of 5π/12. Hint: Note that 5π/12 = 2π/3− π/4.

(

cos
(

2π

3

)

− sin
(

2π

3

)

sin
(

2π

3

)

cos
(

2π

3

)

)(

cos
(

−π

4

)

− sin
(

−π

4

)

sin
(

−π

4

)

cos
(

−π

4

)

)

=

(

1

4

√
2
√
3− 1

4

√
2 − 1

4

√
2
√
3− 1

4

√
2

1

4

√
2
√
3 + 1

4

√
2 1

4

√
2
√
3− 1

4

√
2

)

7. Let V be an inner product space and u 6= 0. Show that the function Tu defined by Tu (v) ≡
v − proj

u
(v) is also a linear transformation. Here

proju (v) ≡ 〈v,u〉
|u|2

u

Now show directly from the axioms of the inner product that

〈Tuv,u〉 = 0

It is obvious that v→ proju (v) is linear from the properties of the inner product. Also v→ v

is linear. Hence Tu is linear. Also

〈

v−〈v,u〉
|u|2

u,u

〉

= 〈v,u〉 − 〈v,u〉 〈u,u〉
|u|2

= 0
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8. Let V be a finite dimensional inner product space, the field of scalars equal to either R or C.
Verify that f given by fv ≡ 〈v, z〉 is in L (V,F). Next suppose f is an arbitrary element of
L (V,F). Show the following.

(a) If f = 0, the zero mapping, then fv = 〈v,0〉 for all v ∈ V .

This is obvious from the properties of the inner product.

〈v,0〉 = 〈v,0+ 0〉 = 〈v,0〉+ 〈v,0〉

so 〈v,0〉 = 0.

(b) If f 6= 0 then there exists z 6= 0 satisfying 〈u, z〉 = 0 for all u ∈ ker (f) .

ker (f) is a subspace and so there exists z1 /∈ ker (f) . Then there exists a closest point of
ker (f) to z1 called x. Then let z = z1 − x. By the theorems on minimization, 〈u, z〉 = 0
for all u ∈ ker (f).

(c) Explain why f (y) z− f (z)y ∈ ker (f).

f (f (y) z− f (z)y) = f (y) f (z)− f (z) f (y) = 0.

(d) Use part b. to show that there exists w such that f (y) = 〈y,w〉 for all y ∈ V .

From part b.
0 = 〈f (y) z− f (z)y, z〉 = f (y) |z|2 − f (z) 〈y, z〉

and so

f (y) =

〈

y,
f (z)

|z|2
z

〉

so w = f(z)

|z|
2 z appears to work.

(e) Show there is at most one such w.

If w1,w2 both work, then for every y,

0 = f (y) − f (y) = 〈y,w1〉 − 〈y,w2〉 = 〈y,w1 −w2〉

In particular, this is true for y = w
1
−w2 and so w1 = w2.

You have now proved the Riesz representation theorem which states that every f ∈ L (V,F) is
of the form

f (y) = 〈y,w〉
for a unique w ∈ V.

9. ↑Let A ∈ L (V,W ) where V,W are two finite dimensional inner product spaces, both having
field of scalars equal to F which is either R or C. Let f ∈ L (V,F) be given by

f (y) ≡ 〈Ay, z〉

where 〈〉 now refers to the inner product in W. Use the above problem to verify that there
exists a unique w ∈ V such that f (y) = 〈y,w〉 , the inner product here being the one on V .
Let A∗

z ≡ w. Show that A∗ ∈ L (W,V ) and by construction,

〈Ay, z〉 = 〈y,A∗

z〉 .

In the case that V = Fn and W = Fm and A consists of multiplication on the left by an m×n
matrix, give a description of A∗.
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It is required to show that A∗ is linear.

〈y,A∗ (αz+ βw)〉 ≡ 〈Ay,αz+ βw〉 = α 〈Ay, z〉+ β 〈Ay,w〉
≡ α 〈y,A∗z〉+ β 〈y,A∗w〉
= 〈y,αA∗z〉 + 〈y,βA∗w〉 = 〈y,αA∗z+ βA∗w〉

Since y is arbitrary, this shows that A∗ is linear. In case A is an m× n matrix as described,

A∗ = (AT )

10. Let A be the linear transformation defined on the vector space of smooth functions (Those
which have all derivatives) given by Af = D2 + 2D + 1. Find ker (A).

First solve (D + 1) z = 0. This is easy to do and gives z (t) = C1e
−t. Now solve (D + 1) y =

C1e
−t. To do this, you multiply by an integrating factor. Thus

d

dt

(

ety
)

= C1

Take an antiderivative and obtain
ety = C1t+ C2

Thus the desired kernel consists of all functions y which are of the form

y (t) = C1te
t + C2e

t

where Ci is a constant.

11. Let A be the linear transformation defined on the vector space of smooth functions (Those
which have all derivatives) given by Af = D2+5D+4. Find ker (A). Note that you could first
find ker (D + 4) whereD is the differentiation operator and then consider ker (D + 1) (D + 4) =
ker (A) and consider Sylvester’s theorem.

In this case, the two operators D + 1 and D + 4 commute and are each one to one on the
kernel of the other. Also, it is obvious that ker (D + a) consists of functions of the form Ce−at.
Therefore, ker (D + 1) (D + 4) consists of functions of the form

y = C1e
−t + C2e

−4t

where C1, C2 are arbitrary constants. In other words, a basis for ker (D + 1) (D + 4) is
{

e−t, e−4t
}

.

12. Suppose Ax = b has a solution where A is a linear transformation. Explain why the solution
is unique precisely when Ax = 0 has only the trivial (zero) solution.

Suppose first there is a unique solution z. Then there can only be one solution to Ax = 0

because if this last equation had more than one solution, say yi, i = 1, 2, then yi + z, i = 1, 2
would each be solutions to Ay = b because A is linear. Recall also that the general solution to
Ax = b consists of the general solution to Ax = 0 added to any solution to Ax = b. Therefore,
if there is only one solution to Ax = 0, then there is only one solution to Ax = b.

13. Verify the linear transformation determined by the matrix

A =

(

1 0 2
0 1 4

)

maps R3 onto R2 but the linear transformation determined by this matrix is not one to one.

This is an old problem. The rank is obviously 2 so the matrix maps onto R2. It is not one to
one because the system Ax = 0 must have a free variable.
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14. Let L be the linear transformation taking polynomials of degree at most three to polynomials
of degree at most three given by

D2 + 2D + 1

where D is the differentiation operator. Find the matrix of this linear transformation relative
to the basis

{

1, x, x2, x3
}

. Find the matrix directly and then find the matrix with respect to
the differential operator D + 1 and multiply this matrix by itself. You should get the same
thing. Why?

You should get the same thing because the multiplication of matrices corresponds to compo-
sition of linear transformations. Lets find the matrix for D + 1 first.

(

1 x+ 1 2x+ x2 3x2 + x3
)

=
(

1 x x2 x3
)









1 1 0 0
0 1 2 0
0 0 1 3
0 0 0 1









so the matrix is








1 1 0 0
0 1 2 0
0 0 1 3
0 0 0 1









Then the matrix of the desired transformation is just this one squared.









1 2 2 0
0 1 4 6
0 0 1 6
0 0 0 1









15. Let L be the linear transformation taking polynomials of degree at most three to polynomials
of degree at most three given by

D2 + 5D + 4

where D is the differentiation operator. Find the matrix of this linear transformation relative
to the bases

{

1, x, x2, x3
}

. Find the matrix directly and then find the matrices with respect
to the differential operators D+1, D+4 and multiply these two matrices. You should get the
same thing. Why?

You get the same thing because the composition of linear transformations corresponds to
matrix multiplication. This time, lets use the operator directly.

(

4 5 + 4x 2 + 10x+ 4x2 6x+ 15x2 + 4x3
)

=
(

1 x x2 x3
)









4 5 2 0
0 4 10 6
0 0 4 15
0 0 0 4









Thus the matrix is








4 5 2 0
0 4 10 6
0 0 4 15
0 0 0 4








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If you did it by looking for the matrix for D + 1 and D + 4 you would get for D + 4
(

4 1 + 4x 2x+ 4x2 3x2 + 4x3
)

=
(

1 x x2 x3
)









4 1 0 0
0 4 2 0
0 0 4 3
0 0 0 4









From the above problem, the matrix of D2+5D+4 should be the product of this matrix with
the one of that problem.









1 1 0 0
0 1 2 0
0 0 1 3
0 0 0 1

















4 1 0 0
0 4 2 0
0 0 4 3
0 0 0 4









=









4 5 2 0
0 4 10 6
0 0 4 15
0 0 0 4









which is the same thing as just obtained.

16. Show that if L ∈ L (V,W ) (linear transformation) where V and W are vector spaces, then if
Lyp = f for some yp ∈ V, then the general solution of Ly = f is of the form

ker (L) + yp.

This is really old stuff. However, here it applies to an arbitrary linear transformation. Suppose
Lz = f . Then L

(

z− y
p

)

= L (z)−L (yp) = f − f = 0. Therefore, letting y = z− y
p
, it follows

that y is a solution to Ly = 0 and z = y
p
+ y. Thus every solution to Ly = f is of the form

yp + y for some y which solves Ly = 0.

17. Let L ∈ L (V,W ) where V,W are vector spaces, finite or infinite dimensional, and define x ∼ y

if x− y ∈ ker (L) . Show that ∼ is an equivalence relation. Next define addition and scalar
multiplication on the space of equivalence classes as follows.

[x] + [y] ≡ [x+ y]

α [x] = [αx]

Show that these are well defined definitions and that the set of equivalence classes is a vector
space with respect to these operations. The zero is [kerL] . Denote the resulting vector space
by V/ ker (L) . Now suppose L is onto W. Define a mapping A : V/ ker (K)→W as follows.

A [x] ≡ Lx

Show that A is well defined, one to one and onto.

It is obvious that x ∼ x. If x ∼ y, then y ∼ x is also clear. If x ∼ y and y ∼ z, then

z− x = z− y + y − x

and by assumption, both z− y and y − x ∈ ker (L) which is a subspace. Therefore, z− x ∈
ker (L) also and so ∼ is an equivalence relation. Are the operations well defined? If [x] =
[x′] , [y] = [y′] , is it true that [x+ y] = [y′ + x

′]? Of course. x
′ + y

′ − (x+ y) = (x′ − x) +
(y′ − y) ∈ ker (L) because ker (L) is a subspace. Similar reasoning applies to the case of scalar
multiplication. Now why is A well defined? If [x] = [x′] , is Lx = Lx′? Of course this is so.
x− x

′ ∈ ker (L) by assumption. Therefore, Lx = Lx′. It is clear also that A is linear. If
A [x] = 0, then Lx = 0 and so x ∈ ker (L) and so [x] = 0. Therefore, A is one to one. It is
obviously onto L (V ) = W.
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18. If V is a finite dimensional vector space and L ∈ L (V, V ) , show that the minimal polynomial
for L equals the minimal polynomial of A where A is the n × n matrix of L with respect to
some basis.

This is really easy because of the definition of what you mean by the matrix of a linear
transformation.

L = qAq−1

where q, q−1 are one to one and onto linear transformations from V to Fn or from Fn to V .
Thus if p (λ) is a polynomial,

p (L) = qp (A) q−1

Thus the polynomials which send L to 0 are the same as those which send A to 0.

19. Let A be an n × n matrix. Describe a fairly simple method based on row operations for
computing the minimal polynomial of A. Recall, that this is a monic polynomial p (λ) such
that p (A) = 0 and it has smallest degree of all such monic polynomials. Hint: Consider

I, A2, · · · . Regard each as a vector in Fn
2

and consider taking the row reduced echelon form
or something like this. You might also use the Cayley Hamilton theorem to note that you can
stop the above sequence at An.

An easy way to do this is to “unravel” the powers of the matrix making vectors in Fn
2

and
then making these the columns of a n2 × n matrix. Look for linear relationships between the
columns by obtaining the row reduced echelon form and using Lemma 8.2.5. As an example,
consider the following matrix.





1 1 0
−1 0 −1
2 1 3





Lets find its minimal polynomial. We have the following powers




1 0 0
0 1 0
0 0 1



 ,





1 1 0
−1 0 −1
2 1 3



 ,





0 1 −1
−3 −2 −3
7 5 8



 ,





−3 −1 −4
−7 −6 −7
18 15 19





By the Cayley Hamilton theorem, I won’t need to consider any higher powers than this. Now
I will unravel each and make them the columns of a matrix.





























1 1 0 −3
0 1 1 −1
0 0 −1 −4
0 −1 −3 −7
1 0 −2 −6
0 −1 −3 −7
0 2 7 18
0 1 5 15
1 3 8 19





























Next you can do row operations and obtain the row reduced echelon form for this matrix and
then look for linear relationships.





























1 0 0 2
0 1 0 −5
0 0 1 4
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




























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From this and Lemma 8.2.5, you see that for A denoting the matrix,

A3 = 4A2 − 5A+ 2I

and so the minimal polynomial is

λ3 − 4λ2 + 5λ− 2

No smaller degree polynomial can work either. Since it is of degree 3, this is also the charac-
teristic polynomial. Note how we got this without expanding any determinants or solving any
polynomial equations. If you factor this polynomial, you get

λ3−4λ2+5λ−2 = (λ− 2) (λ− 1)2 so this is an easy problem, but you see that this procedure
for finding the minimal polynomial will work even when you can’t factor the characteristic
polynomial. If you want to work with smaller matrices, you could also look at Ak

ei for e1, e2,
etc., use similar techniques on each of these and then find the least common multiple of the
resulting polynomials.

20. Let A be an n× n matrix which is non defective. That is, there exists a basis of eigenvectors.
Show that if p (λ) is the minimal polynomial, then p (λ) has no repeated roots. Hint: First
show that the minimal polynomial of A is the same as the minimal polynomial of the diagonal
matrix

D =







D (λ1)
. . .

D (λr)







Where D (λ) is a diagonal matrix having λ down the main diagonal and in the above, the λi

are distinct. Show that the minimal polynomial is
∏

r

i=1
(λ− λi) .

If two matrices are similar, then they must have the same minimal polynomial. This is obvious
from the fact that for p (λ) any polynomial and A = S−1BS,

p (A) = S−1p (B)S

So what is the minimal polynomial of the above D? It is obviously
∏

r

i=1
(λ− λi) . Thus there

are no repeated roots.

21. Show that if A is an n × n matrix and the minimal polynomial has no repeated roots, then
A is non defective and there exists a basis of eigenvectors. Thus, from the above problem, a
matrix may be diagonalized if and only if its minimal polynomial has no repeated roots. It
turns out this condition is something which is relatively easy to determine. Hint: You might
want to use Theorem 17.3.1.

If A has a minimal polynomial which has no repeated roots, say

p (λ) =

m
∏

j=1

(λ− λi) ,

then from the material on decomposing into direct sums of generalized eigenspaces, you have

F
n = ker (A− λ1I)⊕ ker (A− λ2I)⊕ · · · ⊕ ker (A− λmI)

and by definition, the basis vectors for ker (A− λ2I) are all eigenvectors. Thus F
n has a basis

of eigenvectors and is therefore diagonalizable or non defective.
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